Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Artifact' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Artifact' found in 62 terms [] and 104 definitions []
previous     76 - 80 (of 166)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13]  [14 15 16 17 18 19 20 ... ]
Searchterm 'Artifact' was also found in the following services: 
spacer
News  (6)  Resources  (10)  Forum  (22)  
 
Field StrengthForum -
related threads
 
In every MR examination, a large static magnetic field is applied. Field strengths for clinical equipment can vary between 0.2 and 3 T; experimental imaging units have a field strength of up to 11 T, depending on the MRI equipment used. In MRS, field strengths up to 12 T are currently used. The field strength of the magnet will influence the quality of the MR image regarding chemical shift artifacts, the signal to noise ratio (SNR), motion sensitivity and susceptibility artifacts.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer
 
• Related Searches:
    • Abdominal Imaging
    • Low Field MRI
    • Bandwidth
    • 5 Gauss Line
    • B1
 
Further Reading:
  Basics:
What affects the strength of a magnet?
   by my.execpc.com    
Magnetic Field of the Strongest Magnet
2003   by hypertextbook.com    
  News & More:
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
Opportunities in Interventional and Diagnostic Imaging by Using High-performance Low-Field-Strength MRI
Tuesday, 1 October 2019   by pubs.rsna.org    
Low-field MRI: An MR physics perspective
Sunday, 13 January 2019   by onlinelibrary.wiley.com    
Ultra-high-field MRI allows for earlier diagnosis of multiple sclerosis
Friday, 4 May 2007   by www.eurekalert.org    
Low-intensity MRI takes first scan of a human brain
Wednesday, 14 November 2007   by technology.newscientist.com    
Searchterm 'Artifact' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (60) Open this link in a new window
Field of View
 
(FOV) Defined as the size of the two or three dimensional spatial encoding area of the image. Usually defined in units of mm². The FOV is the square image area that contains the object of interest to be measured. The smaller the FOV, the higher the resolution and the smaller the voxel size but the lower the measured signal. Useful for decreasing the scantime is a field of view different in the frequency and phase encoding directions (rectangular field of view - RFOV).
The magnetic field homogeneity decreases as more tissue is imaged (greater FOV). As a result the precessional frequencies change across the imaging volume. That can be a problem for fat suppression imaging. This fat is precessing at the expected frequency only in the center of the imaging volume. E.g. frequency specific fat saturation pulses become less effective when the field of view is increased. It is best to use smaller field of views when applying fat saturation pulses.
mri safety guidance
Image Guidance
Smaller FOV required higher gradient strength and concludes low signal. Therefore you have to find a compromise between these factors. The right choice of the field of view is important for MR image quality. When utilizing small field of views and scanning at a distance from the isocenter (more problems with artifacts) it is obviously important to ensure that the region of interest is within the scanning volume.
A smaller FOV in one direction is available with the function rectangular field of view (RFOV).

See also Field Inhomogeneity Artifact.
 
Images, Movies, Sliders:
 MRI - Anatomic Imaging of the Foot  Open this link in a new window
    
SlidersSliders Overview

 MRI - Anatomic Imaging of the Ankle 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Field of View' (27).Open this link in a new window

 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
  News & More:
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
Path Found to a Combined MRI and CT Scanner
Wednesday, 20 March 2013   by spectrum.ieee.org    
MRI Resources 
Artifacts - Anatomy - Quality Advice - Portals - Pacemaker - Lung Imaging
 
FlowForum -
related threads
 
Flow phenomena are intrinsic processes in the human body. Organs like the heart, the brain or the kidneys need large amounts of blood and the blood flow varies depending on their degree of activity. Magnetic resonance imaging has a high sensitivity to flow and offers accurate, reproducible, and noninvasive methods for the quantification of flow. MRI flow measurements yield information of blood supply of of various vessels and tissues as well as cerebro spinal fluid movement.
Flow can be measured and visualized with different pulse sequences (e.g. phase contrast sequence, cine sequence, time of flight angiography) or contrast enhanced MRI methods (e.g. perfusion imaging, arterial spin labeling).
The blood volume per time (flow) is measured in: cm3/s or ml/min. The blood flow-velocity decreases gradually dependent on the vessel diameter, from approximately 50 cm per second in arteries with a diameter of around 6 mm like the carotids, to 0.3 cm per second in the small arterioles.

Different flow types in human body:
•
Behaves like stationary tissue, the signal intensity depends on T1, T2 and PD = Stagnant flow
•
Flow with consistent velocities across a vessel = Laminar flow
•
Laminar flow passes through a stricture or stenosis (in the center fast flow, near the walls the flow spirals) = Vortex flow
•
Flow at different velocities that fluctuates = Turbulent flow

See also Flow Effects, Flow Artifact, Flow Quantification, Flow Related Enhancement, Flow Encoding, Flow Void, Cerebro Spinal Fluid Pulsation Artifact, Cardiovascular Imaging and Cardiac MRI.
 
Images, Movies, Sliders:
 MVP Parasternal  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Flow' (113).Open this link in a new window


• View the NEWS results for 'Flow' (7).Open this link in a new window.
 
Further Reading:
  News & More:
The super-fast MRI scan that could revolutionise heart failure diagnosis
Wednesday, 21 September 2022   by www.eurekalert.org    
Searchterm 'Artifact' was also found in the following services: 
spacer
News  (6)  Resources  (10)  Forum  (22)  
 
Flow Effects
 
Motion of material being imaged, particularly flowing blood, can result in many possible effects in the images.
Fast moving blood produces flow voids, blood flowing in to the outer slices of an imaging volume produces high signals (flow related enhancement, entry slice phenomenon), pulsatile flow creates ghost images of the vessel extending across the image in the phase encoding direction (image misregistration).
Flow-related dephasing occurring when spin isochromats are moving with different velocities in an external gradient field G so that they acquire different phases. When these phases vary by more then 180° within a voxel, substantial spin dephasing results leading to considerable intravascular signal loss.
These effects can be understood as caused by time of flight effects (washout or washin due to motion of nuclei between two consecutive spatially selective RF excitations, repeated in times on the order of, or shorter than the relaxation times of blood) or phase shifts (delay between phase encoding and frequency encoding) that can be acquired by excited spins moving along magnetic field gradients.
The inconsistency of the signal resulting from pulsatile flow can lead to artifacts in the image. The flow effects can also be exploited for MR angiography or flow measurements.

See also Flow Artifact.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Neck  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Flow Effects' (16).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Searchterm 'Artifact' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (60) Open this link in a new window
Gastrointestinal Superparamagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Gastrointestinal (GI) superparamagnetic contrast agents are used in MRI to improve the visualization of e.g., the intestinal tract, the pancreas (see MRCP), etc. Disadvantages are susceptibility artifacts e.g., dependent on delayed imaging or large volumes resulting in artifacts in the colon and distal small bowel loops related to higher concentration of the particles and absorption of the fluid.
Different types of MRI gastrointestinal superparamagnetic contrast agents:
•
Magnetite albumin microsphere

Usually gastrointestinal superparamagnetic contrast media consist of small iron oxide crystals (ferrites), which produce a signal reduction in the stomach and bowel after oral administration. The T2 shortening caused by these particles is produced from the local magnetic field inhomogeneities associated with the large magnetic moments of superparamagnetic particles. Ferrites are iron oxides of the general formula Fe203.MO, where M is a divalent metal ion and may be mixed with Fe3O4 in different preparations. Ferrites can produce symptoms of nausea after oral administration, as well as flatulence and a transient rise in serum iron. Embedding in inert substances reduce side effects by decreasing the absorption and interaction with body tissues. Combining these contrast materials with polymers such as polyethylene glycol or cellulose, or with sugars such as dextrose, results in improved T1 and/or T2 relaxivity compared with that of the contrast agent alone.

See also Negative Oral Contrast Agents, Gastrointestinal Diamagnetic Contrast Agents, Relaxivity, and Combination Oral Contrast Agents.
spacer

• View the DATABASE results for 'Gastrointestinal Superparamagnetic Contrast Agents' (6).Open this link in a new window

 
Further Reading:
  Basics:
Negative GI Contrast Agents
   by www.mritutor.org    
MRI Resources 
Breast Implant - Patient Information - Anatomy - Liver Imaging - Examinations - Image Quality
 
previous      76 - 80 (of 166)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13]  [14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]