Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Blood Flow Imaging' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Blood Flow Imaging' found in 1 term [] and 0 definition [], (+ 19 Boolean[] results
previous     16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
Searchterm 'Blood Flow Imaging' was also found in the following services: 
spacer
News  (15)  Resources  (5)  
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer
 
• Related Searches:
    • Cardiovascular Imaging
    • T2*
    • Contrast Enhanced MRI
    • Gd Labeled Albumin
    • Blood Oxygenation Level Dependent Contrast
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
Devices - Non-English - Raman Spectroscopy - Veterinary MRI - Hospitals - Liver Imaging
 
Superparamagnetic Iron OxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(SPIO) Relatively new types of MRI contrast agents are superparamagnetic iron oxide-based colloids (median diameter greater than 50nm). These compounds consist of nonstoichiometric microcrystalline magnetite cores, which are coated with dextrans (in ferumoxide) or siloxanes (in ferumoxsil). After injection they accumulate in the reticuloendothelial system (RES) of the liver (Kupffer cells) and the spleen. At low doses circulating iron decreases the T1 time of blood, at higher doses predominates the T2* effect.
SPIO agents are much more effective in MR relaxation than paramagnetic agents. Since hepatic tumors either do not contain RES cells or their activity is reduced, the contrast between liver and lesion is improved. Superparamagnetic iron oxides cause noticeable shorter T2 relaxation times with signal loss in the targeted tissue (e.g., liver and spleen) with all standard pulse sequences. Magnetite, a mixture of FeO and Fe2O3, is one of the used iron oxides. FeO can be replaced by Fe3O4.
Use of these colloids as tissue specific contrast agents is now a well-established area of pharmaceutical development. Feridex®, Endorem™, GastroMARK®, Lumirem®, Sinerem®, Resovist® and more patents pending tell us that the last word in this area is not said.
Some remarkable points using SPIO:
•
A minimum delay of about 10 min. between injection (or infusion) and MR imaging, extends the examination time.
•
Cross-section flow void in narrow blood vessels may impede the differentiation from small liver lesions.
•
Aortic pulsation artifacts become more pronounced.


See also Superparamagnetism, Superparamagnetic Contrast Agents and Classifications, Characteristics, etc..
spacer

• View the DATABASE results for 'Superparamagnetic Iron Oxide' (32).Open this link in a new window


• View the NEWS results for 'Superparamagnetic Iron Oxide' (3).Open this link in a new window.
 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
  News & More:
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells
Tuesday, 5 January 2016   by www.nature.com    
Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl2) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer
Wednesday, 11 July 2012   by www.biomedcentral.com    
MRI Resources 
Societies - Portals - MR Guided Interventions - Diffusion Weighted Imaging - Mobile MRI - Open Directory Project
 
Time of Flight AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.

See also Magnetic Resonance Angiography and Contrast Enhanced Magnetic Resonance Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Coronary Angiogram
spacer
Medical-Ultrasound-Imaging.comColor Power Angio,  Doppler Ultrasound
spacer

• View the DATABASE results for 'Time of Flight Angiography' (11).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
Searchterm 'Blood Flow Imaging' was also found in the following services: 
spacer
News  (15)  Resources  (5)  
 
Circle of WillisForum -
related threadsMRI Resource Directory:
 - Anatomy -
 
A large network of interconnecting blood vessels at the base of the brain that when visualized resembles a circle, the arteries effectively act as anastomoses for each other. This means that if any one of the communicating arteries becomes blocked, blood can flow from another part of the circle to ensure that blood flow is not compromised.
The circle of Willis is formed by both the internal carotid arteries, entering the brain from each side and the basilar artery, entering posteriorly. The connection of the vertebral arteries forms the basilar artery. The basilar artery divides into the right and left posterior cerebral arteries. The internal carotid arteries trifurcate into the anterior cerebral artery, middle cerebral artery, and posterior communicating artery. The two anterior cerebral arteries are joined together anteriorly by the anterior communicating artery. The posterior communicating arteries join the posterior cerebral arteries, completing the circle of Willis.
The time of flight angiography MRI technique allows imaging of the circle of Willis without the need of a contrast medium (best results with high field MRI). A cerebrovasular contrast enhanced magnetic resonance angiography (MRA) depicts the circle of Willis in addition to the vessels of the neck (carotid and vertebral arteries) with one bolus injection of a contrast agent.

For Ultrasound Imaging (USI) see Cerebrovascular Ultrasonography at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Circle of Willis' (5).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Movies - Coils - General - Musculoskeletal and Joint MRI - MRI Technician and Technologist Career - Chemistry
 
Brain MRIForum -
related threadsMRI Resource Directory:
 - Brain MRI -
 
Brain imaging, magnetic resonance imaging of the head or skull, cranial magnetic resonance tomography (MRT), neurological MRI - they describe all the same radiological imaging technique for medical diagnostic.
Magnetic resonance imaging of the human brain includes the anatomic description and the detection of lesions. Special techniques like diffusion weighted imaging, functional magnetic resonance imaging (fMRI) and spectroscopy provide also information about the function and chemical metabolites of the brain. MRI provides detailed pictures of brain and nerve tissues in multiple planes without obstruction by overlying bones. Brain MRI is the procedure of choice for most brain disorders. It provides clear images of the brainstem and posterior brain, which are difficult to view on a CT scan. It is also useful for the diagnosis of demyelinating disorders (disorders such as multiple sclerosis (MS) that cause destruction of the myelin sheath of the nerve).
With this noninvasive procedure also the evaluation of blood flow and the flow of cerebrospinal fluid (CSF) is possible. Different MRA methods, also without contrast agents can show a venous or arterial angiogram. MRI can distinguish tumors, inflammatory lesions, and other pathologies from the normal brain anatomy. However, MRI scans are also used instead other methods to avoid the dangers of interventional procedures like angiography (DSA - digital subtraction angiography) as well as of repeated exposure to radiation as required for computed tomography (CT) and other X-ray examinations.
A (birdcage) bird cage coil achieves uniform excitation and reception and is commonly used to study the brain. Usually a brain MRI procedure includes FLAIR, T2 weighted and T1 weighted sequences in two or three planes.

See also Fetal MRI, Fluid Attenuation Inversion Recovery (FLAIR), Perfusion Imaging and High Field MRI.
See also Arterial Spin Labeling.
 
Images, Movies, Sliders:
 Brain MRI Images Axial T2  Open this link in a new window
      

 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Orbita  Open this link in a new window
      

 Brain MRI Images T1  Open this link in a new window
 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
Medical-Ultrasound-Imaging.comA-Mode
spacer

• View the DATABASE results for 'Brain MRI' (14).Open this link in a new window


• View the NEWS results for 'Brain MRI' (32).Open this link in a new window.
 
Further Reading:
  Basics:
New MRI technique offers faster diagnosis of multiple sclerosis
Monday, 1 February 2016   by medicalxpress.com    
Ultra-high-field MRI reveals language centres in the brain in much more detail
Tuesday, 28 October 2014   by medicalxpress.com    
A Dutch study has revealed that as many as 13% of healthy adults may have some type of undiagnosed abnormality in the brain.
Sunday, 4 November 2007   by www.news-medical.net:80    
  News & More:
MRI Reveals Significant Brain Abnormalities Post-COVID
Monday, 21 November 2022   by neurosciencenews.com    
Combining genetics and brain MRI can aid in predicting chances of Alzheimer's disease
Wednesday, 29 June 2022   by www.sciencedaily.com    
Roundup: How Even Mild COVID Can Affect the Brain; This Many Daily Steps Improves Longevity; and More
Friday, 11 March 2022   by baptisthealth.net    
A low-cost and shielding-free ultra-low-field brain MRI scanner
Tuesday, 14 December 2021   by www.nature.com    
Large International Study Reveals Spectrum of COVID-19 Brain Complications
Tuesday, 9 November 2021   by www.itnonline.com    
Brain MRI-Based Subtypes of MS Predict Disability Progression, Treatment Response
Thursday, 13 May 2021   by www.neurologyadvisor.com    
New MRI method improves detection of disease changes in the brain's network
Thursday, 11 June 2020   by www.compute.dtu.dk    
New NeuroCOVIDÂť Classification System Uses MRI to Categorize Patients
Friday, 12 June 2020   by www.diagnosticimaging.com    
New MRI technique can 'see' molecular changes in the brain
Thursday, 5 September 2019   by medicalxpress.com    
Talking therapy or medication for depression: Brain scan may help suggest better treatment
Monday, 27 March 2017   by www.newsnation.in    
MRI identifies brain abnormalities in chronic fatigue syndrome patients
Wednesday, 29 October 2014   by www.eurekalert.org    
MRIs Useful in Tracking Depression in MS Patients
Tuesday, 1 July 2014   by www.hcplive.com    
Contrast agent linked with brain abnormalities on MRI
Tuesday, 17 December 2013   by www.sciencecodex.com    
MRIs Reveal Signs of Brain Injuries Not Seen in CT Scans
Tuesday, 18 December 2012   by www.sciencedaily.com    
Iron Deposits in the Brain May Be Early Indicator of MS
Wednesday, 13 November 2013   by www.healthline.com    
Migraine Sufferers Have Thicker Brain Cortex
Tuesday, 20 November 2007   by www.medicalnewstoday.com    
MRI Resources 
Homepages - Equipment - Education - Stimulator pool - Intraoperative MRI - Journals
 
previous      16 - 20 (of 20)     
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]