Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Cine' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Cine' found in 5 terms [] and 52 definitions []
previous     36 - 40 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
Searchterm 'Cine' was also found in the following services: 
spacer
News  (103)  Resources  (80)  Forum  (12)  
 
Maximum Intensity Projection
 
(MIP) MRA images can be processed by Maximum Intensity Projection to interactively create different projections. The MIP connects the high intensity dots of the blood vessels in three dimensions, providing an angiogram that can be viewed from any projection. Each point in the MIP represents the highest intensity experienced in that location on any partition within the imaging volume.
For complete interpretation the base slices should also be reviewed individually and with multiplanar reconstruction (MPR) software. The MIP can then be displayed in a CINE format or filmed as multiple images acquired from different projections. Although the maximum intensity projection (MIP) algorithm is sensitive to high signal from inflowing spins, it is also sensitive to high signal of any other etiology.
 
Images, Movies, Sliders:
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer
 
• Related Searches:
    • Staircase Artifact
    • Angiography
    • Blood Pool Agents
    • Magnetic Resonance Cholangiopancreaticography
    • Contrast Enhanced Magnetic Resonance Angiography
 
Further Reading:
  News & More:
State of the art in magnetic resonance imaging
Saturday, 1 February 2020   by physicstoday.scitation.org    
4D-Fueled AI with DCE-MRI Improves Breast Lesion Characterization
Friday, 26 February 2021   by www.diagnosticimaging.com    
Searchterm 'Cine' was also found in the following services: 
spacer
Radiology  (35) Open this link in a new windowUltrasound  (56) Open this link in a new window
Monoclonal AntibodiesInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(McAb) Monoclonal antibodies are used for tumor detection and localization in nuclear medicine. In MRI, monoclonal antibodies labeled with paramagnetic or superparamagnetic particles are being studied for targeting tumors, for example contrast agent containing gadolinium attached to a targeting antibody. The antibody would bind to a specific target (e.g., a metastatic melanoma cell) while the gadolinium would increase the MRI signal. Further developments are MRI contrast agents that specifically target glucose receptors on tumor cells; coupled with the high spatial resolution of high field MRI devices, these agents have potentials to detect small tumor foci.
The monoclonal antibody manufacturers produce a wide variety of ligands, which can be directed against a multiplicity of pathologic molecular targets. MRI enhanced with targeted contrast agents can be used for molecular imaging.
spacer

• View the DATABASE results for 'Monoclonal Antibodies' (4).Open this link in a new window

 
Further Reading:
  News & More:
Measuring mAbs with magnetic resonance can help regulatory testing
Thursday, 23 April 2015   by www.biopharma-reporter.com    
Repligen - Eyeing Sustainable Profitability
Monday, 31 October 2011   by www.rttnews.com    
MRI Resources 
Shoulder MRI - Mobile MRI - Sequences - Raman Spectroscopy - Homepages - Pacemaker
 
Myocardial Late Enhancement
 
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.

For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com.
spacer

• View the DATABASE results for 'Myocardial Late Enhancement' (6).Open this link in a new window

 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Prediction of Myocardial Viability by MRI
1999   by circ.ahajournals.org    
Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
Monday, 27 August 2007   by www.brightsurf.com    
Searchterm 'Cine' was also found in the following services: 
spacer
News  (103)  Resources  (80)  Forum  (12)  
 
Osmole
 
(Osm) A unit of osmotic pressure used in physical chemistry, cell biology, and medicine.
Definition: 1 osmole is the osmotic pressure of a one molar solution (that is, a solution with a concentration of one mole per liter of solvent) of a substance that does not dissociate.
If chemical solutions are separated by a semipermeable membrane (a membrane that resists the passage of dissolved substances but permits the passage of the solvent, usually water), then the solvent will diffuse across the membrane to equalize the concentrations. This process is called osmosis.
Solutions with higher concentrations of dissolved substances are said to have higher osmotic pressure than solutions having lower concentrations; thus the solvent moves from an area of low osmotic pressure to an area of higher osmotic pressure.
Osmotic pressure depends on the total number of dissolved particles, so for a substance that dissociates into two ions, such as ordinary salt (sodium chloride), a one molar solution has an osmotic pressure of 2 osmoles. In practice, most measurements are in milliosmoles (mOsm). Typical values range from 20 mOsm for fresh water through 290 mOsm for typical human blood plasma to 1010 mOsm for salt water from the open ocean.
spacer
Searchterm 'Cine' was also found in the following services: 
spacer
Radiology  (35) Open this link in a new windowUltrasound  (56) Open this link in a new window
Picture Archiving and Communication SystemMRI Resource Directory:
 - PACS -
 
(PACS) A system used to communicate and archive medical imaging data, mostly images and associated textural data generated in a radiology department, and disseminated throughout the hospital. A PACS is usually based on the DICOM (Digital Imaging and Communications in Medicine) standard.
The main components in the PACS are:
•
acquisition devices where the images are acquired,
•
short and longer term archives for storage of digital and textural data,
•
a database and database management,
•
diagnostic and review workstations,
•
software to run the system,
•
a communication network linking the system components,
•
interfaces with other networks (hospital and radiological information systems).

Acquisition devices, which acquire their data in direct digital format, like a MRI system, are most easily integrated into a PACS.
Short term archives need to have rapid access, such as provided by a RAID (redundant array of independent disks), whereas long term archives need not have such rapid access and can be consigned, e.g. to optical disks or a magnetic.
High speed networks are necessary for rapid transmission of imaging data from the short term archive to the diagnostic workstations. Optical fiber, ATM (asynchronous transfer mode), fast or switched Ethernet, are examples of high speed transmission networks, whereas demographic textural data may be transmitted along conventional Ethernet.
Sophisticated software is a major element in any hospital-wide PACS. The software concepts include: preloading or prefetching of historical images pertinent to current examinations, worklists and folders to subdivide the vast mass of data acquired in a PACS in a form, which is easy and practical to access, default display protocols whereby images are automatically displayed on workstation monitors in a prearranged clinically logical order and format, and protocols radiologists can rapidly report worklists of undictated examinations, using a minimum of computer manipulation.
spacer

• View the DATABASE results for 'Picture Archiving and Communication System' (5).Open this link in a new window


• View the NEWS results for 'Picture Archiving and Communication System' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Healthcare IT Yellow Pages PACS / Image Management Directory
   by www.health-infosys-dir.com    
MRI Resources 
Mass Spectrometry - Stimulator pool - MRI Accidents - Open Directory Project - Homepages - Pacemaker
 
previous      36 - 40 (of 57)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]