Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Contrast Reversal' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Contrast Reversal' found in 1 term [] and 1 definition [], (+ 2 Boolean[] results
1 - 4 (of 4)     
Result Pages : [1]
MRI Resources 
Safety pool - MR Guided Interventions - Contrast Enhanced MRI - Collections - MRI Accidents - Quality Advice
 
Contrast Reversal
 
Contrast reversal is an MR image phenomenon where the dark parts become bright, and the bright parts become dark. This is usually most prevalent in sequences utilizing an extended TR.
spacer
 
• Share the entry 'Contrast Reversal':  Facebook  Twitter  LinkedIn  
 
Further Reading:
  Basics:
MICRO-STRUCTURAL QUANTITIES - DIFFUSION, MAGNETISATION DECAY, MAGNETISATION TRANSFER AND PERMEABILITY(.pdf)
   by www.dundee.ac.uk    
MRI Resources 
Sequences - Implant and Prosthesis pool - Brain MRI - MRCP - Nerve Stimulator - MRA
 
ContrastForum -
related threads
 
Contrast is the relative difference of signal intensities in two adjacent regions of an image.
Due to the T1 and T2 relaxation properties in magnetic resonance imaging, differentiation between various tissues in the body is possible. Tissue contrast is affected by not only the T1 and T2 values of specific tissues, but also the differences in the magnetic field strength, temperature changes, and many other factors. Good tissue contrast relies on optimal selection of appropriate pulse sequences (spin echo, inversion recovery, gradient echo, turbo sequences and slice profile).
Important pulse sequence parameters are TR (repetition time), TE (time to echo or echo time), TI (time for inversion or inversion time) and flip angle. They are associated with such parameters as proton density and T1 or T2 relaxation times. The values of these parameters are influenced differently by different tissues and by healthy and diseased sections of the same tissue.
For the T1 weighting it is important to select a correct TR or TI. T2 weighted images depend on a correct choice of the TE. Tissues vary in their T1 and T2 times, which are manipulated in MRI by selection of TR, TI, and TE, respectively. Flip angles mainly affect the strength of the signal measured, but also affect the TR/TI/TE parameters.
Conditions necessary to produce different weighted images:
T1 Weighted Image: TR value equal or less than the tissue specific T1 time - TE value less than the tissue specific T2 time.
T2 Weighted Image: TR value much greater than the tissue specific T1 time - TE value greater or equal than the tissue specific T2 time.
Proton Density Weighted Image: TR value much greater than the tissue specific T1 time - TE value less than the tissue specific T2 time.

See also Image Contrast Characteristics, Contrast Reversal, Contrast Resolution, and Contrast to Noise Ratio.
 
Images, Movies, Sliders:
 Fetus (Brain) and Dermoid in Mother  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Liver  Open this link in a new window
      

 Brain MRI Inversion Recovery  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Contrast' (373).Open this link in a new window


• View the NEWS results for 'Contrast' (77).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Image Characteristics and Quality
   by www.sprawls.org    
  News & More:
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
A groundbreaking new graphene-based MRI contrast agent
Friday, 8 June 2012   by www.nanowerk.com    
New MRI Chemical Offers Amazing Contrast
Friday, 22 January 2010   by news.softpedia.com    
MRI Resources 
Lung Imaging - Anatomy - Veterinary MRI - Contrast Agents - Service and Support - Fluorescence
 
Myocardial Late Enhancement
 
(LE) Myocardial late enhancement in contrast enhanced cardiac MRI has the ability to precisely delineate myocardial scar associated with coronary artery disease. Viability imaging implies evaluating infarcted myocardium to see whether there is enough viable tissue available for revascularization. The reversal of myocardial dysfunction is particularly relevant in patients with depressed ventricular function because revascularization improves long-term survival. In comparison to SPECT and PET imaging, myocardial late enhancement MRI demonstrates areas of delayed enhancement exactly in correlation with the infarcted region.
Viability on cardiac MRI (CMR) is based on the fact that all infarcts enhance vividly 10-15 minutes after the administration of intravenous paramagnetic contrast agents. This enhancement represents the accumulation of gadolinium in the extracellular space, due to the loss of membrane integrity in the infarcted tissue. This phenomenon of delayed hyperenhancement has been proven to correlate with the actual extent of the infarct.
MRI myocardial late enhancement can quantify the size, location and transmural extent of the infarct. If the transmural extent of the infarct (region of enhancement on MRI) is less than 50% of the wall thickness, there will be improved contractility in that segment following revascularization. In areas of hypokinesia, if there is a rim of "black" or non-infarcted myocardium that is not contracting well, it indicates the presence of hibernating myocardium, which is likely to improve after revascularization of the artery supplying that particular territory.
The total duration of a myocardial late enhancement MR imaging protocol for viability is approximately 30 minutes, including scout images, first-pass images, cine images in two planes, and delayed myocardial enhancement images. In order to assess viable myocardium, the gadolinium contrast agent is injected at a dose of 0.15 to 0.2 mmol/kg. After about 10 minutes, short axis and long axis views (see cardiac axes) of the heart are obtained using an inversion prepared ECG gated gradient echo sequence. The inversion pulse is adjusted to suppress normal myocardium. Areas of nonviable myocardium retain extremely high signal intensity, black areas show normal tissue.

For Ultrasound Imaging (USI) see Myocardial Contrast Echocardiography at Medical-Ultrasound-Imaging.com.
spacer

• View the DATABASE results for 'Myocardial Late Enhancement' (6).Open this link in a new window

 
Further Reading:
  Basics:
A Guide To Cardiac Imaging
   by www.simplyphysics.com    
  News & More:
Prediction of Myocardial Viability by MRI
1999   by circ.ahajournals.org    
Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
Monday, 27 August 2007   by www.brightsurf.com    
MRI Resources 
Blood Flow Imaging - Breast MRI - Pacemaker - Image Quality - Implant and Prosthesis - MRI Physics
 
Spin EchoForum -
related threads
 
(SE) The Reappearance of the MR signal after the FID has apparently died away, as a result of the effective reversal (rephasing) of the dephasing spins by techniques such as specific RF pulse sequences or pairs of field gradient pulses, applied in time shorter than or on the order of T2. Proper selection of the TE time of the pulse sequence can help to control the amount of T1 or T2 contrast present in the image. Pulse sequences of the spin echo type, usually employs a 90° pulse, followed by one or more 180° pulses to eliminate field inhomogeneity and chemical shift effects at the echo. Caused by this 180° refocusing pulse, spin echo or fast spin echo (FSE, TSE) sequences are more robust against e.g. susceptibility artifacts than sequences of the gradient echo type.
spacer

• View the DATABASE results for 'Spin Echo' (96).Open this link in a new window


• View the NEWS results for 'Spin Echo' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
  News & More:
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
MRI Resources 
Online Books - Guidance - Supplies - Pediatric and Fetal MRI - Services and Supplies - Brain MRI
 
     1 - 4 (of 4)     
Result Pages : [1]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]