Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Echo' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Echo' found in 100 terms [] and 162 definitions []
previous     36 - 40 (of 262)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]  [ ... ]
Searchterm 'Echo' was also found in the following services: 
spacer
News  (7)  Resources  (10)  Forum  (35)  
 
Multiple Echo Imaging
 
Spin echo imaging using spin echoes acquired as a train. Typically a separate image is produced from each echo of the train.
spacer
Searchterm 'Echo' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (159) Open this link in a new window
Spin Echo Multi SliceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SEMS) This pulse sequence is composed of a 90° RF pulse followed by a 180° refocusing pulse. Both RF pulses are applied in the presence of a slice select gradient.
By choosing of different TR and TE, depending on the T1 and T2 values of the tissues, proton density, T1 weighted and T2 weighted images can be acquired.
The inversion recovery option enlarge the RF pulses with a 180° inverting pulse, applied a TI time before the beginning of the pulse sequence in order to manipulate image contrast.
See also Spin Echo Sequence.
spacer
 
Further Reading:
  Basics:
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
MRI Resources 
Education pool - Sequences - Claustrophobia - Crystallography - Guidance - Pediatric and Fetal MRI
 
Coherent Gradient EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.
spacer

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

Searchterm 'Echo' was also found in the following services: 
spacer
News  (7)  Resources  (10)  Forum  (35)  
 
Double Turbo Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DTSE / DE TSE) Simultaneously acquired T2 and density weighted echoes in a TSE sequence.

See also Fast Spin Echo.
spacer
 
Further Reading:
  Basics:
BASIC PRINCIPLES OF MR IMAGING
   by spinwarp.ucsd.edu    
Searchterm 'Echo' was also found in the following services: 
spacer
Radiology  (4) Open this link in a new windowUltrasound  (159) Open this link in a new window
Dual Echo Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(DESS) This sequence was originally known as FADE. It combines both the gradient echoes acquired in FISP and PSIF sequences in separate acquisition periods during a single interpulse interval. Phase encoding gradients are balanced to maintain the transverse steady state signals. The frequency encoding gradient is left on for the period of both the echoes, and is incompletely balanced to avoid dark banding artifacts otherwise associated with long TR fully balanced steady state sequences. The contrast of DESS is quite unique, true T2 or T1 contrast weighting is not possible. There is a strong fluid signal but fat is bright and other soft tissues appear similar to the short TR FISP image.
Used for, e.g. the joints, cartilage and the prostate.

See Steady State Free Precession and Dual Echo Sequence.
spacer

• View the DATABASE results for 'Dual Echo Steady State' (2).Open this link in a new window

MRI Resources 
Nerve Stimulator - MRI Centers - MRI Reimbursement - Supplies - Brain MRI - Calculation
 
previous      36 - 40 (of 262)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]  [ ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]