| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | | |
Result : Searchterm 'Fourier Transform' found in 8 terms [] and 38 definitions []
| previous 26 - 30 (of 46) nextResult Pages : [1 2] [3 4 5 6 7 8 9 10] | | | | Searchterm 'Fourier Transform' was also found in the following services: | | | | |
| | |
| |
|
In mathematics, the Gibbs phenomenon (also known as ringing artifacts, named after the American physicist J. Willard Gibbs) is the peculiar manner in which the Fourier series of a piecewise continuously differentiable periodic function f behaves at a jump discontinuity: the nth partial sum of the Fourier series has large oscillations near the jump, which might increase the maximum of the partial sum above that of the function itself. The overshoot does not die out as the frequency increases, but approaches a finite limit.
In MRI, artifactual ripples parallel to abrupt and intense changes are caused by the Fourier transformation.
See Gibbs Artifact, Truncation Artifact, Ringing Artifact Reduction. | | | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
An imaginary number is a component of a complex number (satisfying i2 = - 1). In MRI, complex data are used for example in the Fourier transforms. | | | | • View the DATABASE results for 'Imaginary' (11).
| | | | Further Reading: | Basics:
|
|
| |
| | | | | |
| |
|
An integral is a mathematical object that can be interpreted as an area or a generalization of area. A number computed by a limiting process in which the domain of a function, often an interval or planar region, is divided into arbitrarily small units, the value of the function at a point in each unit is multiplied by the linear or areal measurement of that unit, and all such products are summed (summation in the limit). In MRI for example this mathematical function is used in the Fourier transformation. | | | | • View the DATABASE results for 'Integral' (5).
| | | | Further Reading: | Basics:
|
|
| |
| | | Searchterm 'Fourier Transform' was also found in the following services: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'Lorentzian Line' (3).
| | | | |
| | | | | |
| |
|
•
In the 1930's, Isidor Isaac Rabi (Columbia University) succeeded in detecting and measuring single states of rotation of atoms and molecules, and in determining the mechanical and magnetic moments of the nuclei.
•
Felix Bloch (Stanford University) and Edward Purcell (Harvard University) developed instruments, which could measure the magnetic resonance in bulk material such as liquids and solids. (Both honored with the Nobel Prize for Physics in 1952.) [The birth of the NMR spectroscopy]
•
In the early 70's, Raymond Damadian (State University of New York) demonstrated with his NMR device, that there are different T1 relaxation times between normal and abnormal tissues of the same type, as well as between different types of normal tissues.
•
In 1973, Paul Lauterbur (State University of New York) described a new imaging technique that he termed Zeugmatography. By utilizing gradients in the magnetic field, this technique was able to produce a two-dimensional image (back-projection). (Through analysis of the characteristics of the emitted radio waves, their origin could be determined.) Peter Mansfield further developed the utilization of gradients in the magnetic field and the mathematically analysis of these signals for a more useful imaging technique. (Paul C Lauterbur and Peter Mansfield were awarded with the 2003 Nobel Prize in Medicine.)
•
1977/78: First images could be presented.
A cross section through a finger by Peter Mansfield and Andrew A. Maudsley.
Peter Mansfield also could present the first image through the abdomen.
•
In 1977, Raymond Damadian completed (after 7 years) the first MR scanner (Indomitable). In 1978, he founded the FONAR Corporation, which manufactured the first commercial MRI scanner in 1980. Fonar went public in 1981.
•
1981: Schering submitted a patent application for Gd-DTPA dimeglumine.
•
1982: The first 'magnetization-transfer' imaging by Robert N. Muller.
•
In 1983, Toshiba obtained approval from the Ministry of Health and Welfare in Japan for the first commercial MRI system.
•
1986: Jürgen Hennig, A. Nauerth, and Hartmut Friedburg (University of Freiburg) introduced RARE (rapid acquisition with relaxation enhancement) imaging. Axel Haase, Jens Frahm, Dieter Matthaei, Wolfgang Haenicke, and Dietmar K. Merboldt (Max-Planck-Institute, Göttingen) developed the FLASH ( fast low angle shot) sequence.
•
1988: Schering's MAGNEVIST gets its first approval by the FDA.
•
In 1991, fMRI was developed independently by the University of Minnesota's Center for Magnetic Resonance Research (CMRR) and Massachusetts General Hospital's (MGH) MR Center.
•
From 1992 to 1997 Fonar was paid for the infringement of it's patents from 'nearly every one of its competitors in the MRI industry including giant multi-nationals as Toshiba, Siemens, Shimadzu, Philips and GE'.
| | | | | | • View the DATABASE results for 'MRI History' (6).
| | | • View the NEWS results for 'MRI History' (1).
| | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |