Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Gradient Echo' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Gradient Echo' found in 20 terms [] and 114 definitions []
previous     56 - 60 (of 134)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Gradient Echo' was also found in the following services: 
spacer
News  (1)  Resources  (2)  Forum  (6)  
 
Reverse Fast Imaging with Steady State PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(PSIF) A heavily T2* weighted contrast enhanced gradient echo (mirrored FISP) technique. Because TE is relatively long, there are much flow artifacts and less signal to noise. In normal gradient echo techniques a FID-signal results after the RF pulses. This FID is rephased very fast and just before the next FID follows a spin echo signal. The SE is spoiled in FLASH sequences, but with PSIF sequences, only the SE is measured, not the FID.
spacer
 
Further Reading:
  News & More:
Fast T2 weighted imaging by PSIF at 0.2T for interventional MRI.(.pdf)
   by cds.ismrm.org    
MRI Resources 
Mobile MRI Rental - Spectroscopy pool - Pathology - Intraoperative MRI - Services and Supplies - Process Analysis
 
Short Minimum Angled ShotInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
spacer
MRI Resources 
NMR - Knee MRI - Resources - MR Myelography - Brain MRI - Safety Training
 
Short Repetition TechniquesInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
spacer

• View the DATABASE results for 'Short Repetition Techniques' (2).Open this link in a new window

Searchterm 'Gradient Echo' was also found in the following services: 
spacer
News  (1)  Resources  (2)  Forum  (6)  
 
Steady State Free PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence in which a non-zero steady state develops for both components of magnetization (transverse and longitudinal) and also a condition where the TR is shorter than the T1 and T2 times of the tissue. If the RF pulses are close enough together, the MR signal will never completely decay, implying that the spins in the transverse plane never completely dephase. The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, then the flip angle for steady state should be 45-60°.
Steady state free precession is also a method of MR excitation in which strings of RF pulses are applied rapidly and repeatedly with interpulse intervals short compared to both T1 and T2. Alternating the phases of the RF pulses by 180° can be useful. The signal reforms as an echo immediately before each RF pulse; immediately after the RF pulse there is additional signal from the FID produced by the pulse.
The strength of the FID will depend on the time between pulses (TR), the tissue and the flip angle of the pulse; the strength of the echo will additionally depend on the T2 of the tissue. With the use of appropriate dephasing gradients, the signal can be observed as a frequency-encoded gradient echo either shortly before the RF pulse or after it; the signal immediately before the RF pulse will be more highly T2 weighted. The signal immediately after the RF pulse (in a rapid series of RF pulses) will depend on T2 as well as T1, unless measures are taken to destroy signal refocusing and prevent the development of steady state free precession.
To avoid setting up a state of SSFP when using rapidly repeated excitation RF pulses, it may be necessary to spoil the phase coherence between excitations, e.g. with varying phase shifts or timing of the exciting RF pulses or varying spoiler gradient pulses between the excitations.
Steady state free precession imaging methods are quite sensitive to the resonant frequency of the material. Fluctuating equilibrium MR (see also FIESTA and DRIVE)and linear combination SSFP actually use this sensitivity for fat suppression. Fat saturated SSFP (FS-SSFP) use a more complex fat suppression scheme than FEMR or LCSSFP, but has a 40% lower scan time.
A new family of steady state free precession sequences use a balanced gradient, a gradient waveform, which will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
This sequences include, e.g. Balanced Fast Field Echo - bFFE, Balanced Turbo Field Echo - bTFE, Fast Imaging with Steady Precession - TrueFISP and Balanced SARGE - BASG.

See also FIESTA.
spacer

• View the DATABASE results for 'Steady State Free Precession' (20).Open this link in a new window

 
Further Reading:
  News & More:
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
Bioinformatics - Breast MRI - Safety Products - Spine MRI - Functional MRI - PACS
 
Steady State Technique with Refocused FIDInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
spacer

• View the DATABASE results for 'Steady State Technique with Refocused FID' (2).Open this link in a new window

MRI Resources 
Guidance - MRI Technician and Technologist Jobs - NMR - General - MRI Technician and Technologist Schools - Functional MRI
 
previous      56 - 60 (of 134)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]