Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Imaging' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Imaging' found in 72 terms [] and 403 definitions []
previous     81 - 85 (of 475)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]  [16 17 18 19 20 ... ]
Searchterm 'Imaging' was also found in the following services: 
spacer
News  (1520)  Resources  (268)  Forum  (88)  
 
ABLAVAR™InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
ABLAVAR™ (formerly named Vasovist™) is a blood pool agent for magnetic resonance angiography (MRA), which opens new medical imaging possibilities in the evaluation of aortoiliac occlusive disease (AIOD) in patients with suspected peripheral vascular disease.
ABLAVAR™ binds reversibly to blood albumin, providing imaging with high spatial resolution up to 1 hour after injection, due to its high relaxivity and to the long lasting increased signal intensity of blood.
As with other contrast media: the possibility of serious or life-threatening anaphylactic or anaphylactoid reactions, including cardiovascular, respiratory and/or cutaneous manifestations, should always be considered.

WARNING:
NEPHROGENIC SYSTEMIC FIBROSIS
Gadolinium-based contrast agents increase the risk for nephrogenic systemic fibrosis (NSF) in patients with acute or chronic severe renal insufficiency (glomerular filtration rate less than 30 mL/min/1.73m2), or acute renal insufficiency of any severity due to the hepato-renal syndrome or in the perioperative liver transplantation period.

See also Cardiovascular Imaging, Adverse Reaction, Molecular Imaging, and MRI Safety.
Drug Information and Specification
NAME OF COMPOUND
Diphenylcyclohexyl phosphodiester-Gd-DTPA, gadofosveset trisodium, MS-325
CENTRAL MOIETY
Gd2+
CONTRAST EFFECT
T1, predominantly positive enhancement
20-45 mmol-1sec-1, Bo=0,47T
PHARMACOKINETIC
Intravascular
825 mOsmol/kg H2O
CONCENTRATION
244 mg/mL, 0.25mmol/mL
DOSAGE
0.12 mL/kg, 0.03 mmol/kg
PREPARATION
ready to use
DEVELOPMENT STAGE
FDA approved
DISTRIBUTOR
See below
PRESENTATION
10 mL vials
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
EU
Approved
USA, Canada, Australia
ABLAVAR™
Approved
spacer

• View the NEWS results for 'ABLAVAR™' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Ablavar Prescribing Information
   by www.ablavar.com    
  News & More:
The first FDA-approved blood-pool MR agent offers additional time for imaging and possibly some new applications
Thursday, 1 July 2010   by www.radiologytoday.net    
MRI Resources 
Diffusion Weighted Imaging - Liver Imaging - Directories - DICOM - Used and Refurbished MRI Equipment - Research Labs
 
Cardiac Gating
 
This method synchronize the heartbeat with the beginning of the TR, whereat the r wave is used as the trigger. Cardiac gating times the acquisition of MR data to physiological motion in order to minimize motion artifacts. ECG gating techniques are useful whenever data acquisition is too slow to occur during a short fraction of the cardiac cycle.
Image blurring due to cardiac-induced motion occurs for imaging times of above approximately 50 ms in systole, while for imaging during diastole the critical time is of the order of 200-300 ms. The acquisition of an entire image in this time is only possible with using ultrafast MR imaging techniques. If a series of images using cardiac gating or real-time echo planar imaging EPI are acquired over the entire cardiac cycle, pixel-wise velocity and vascular flow can be obtained.
In simple cardiac gating, a single image line is acquired in each cardiac cycle. Lines for multiple images can then be acquired successively in consecutive gate intervals. By using the standard multiple slice imaging and a spin echo pulse sequence, a number of slices at different anatomical levels is obtained. The repetition time (TR) during a ECG-gated acquisition equals the RR interval, and the RR interval defines the minimum possible repetition time (TR). If longer TRs are required, multiple integers of the RR interval can be selected. When using a gradient echo pulse sequence, multiple phases of a single anatomical level or multiple slices at different anatomical levels can be acquired over the cardiac cycle.
Also called cardiac triggering.
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Cardiac Gating' (15).Open this link in a new window

 
Further Reading:
  Basics:
Cardiac MRI - Technical Aspects Primer
Wednesday, 7 August 2002
Electrocardiogram in an MRI Environment: Clinical Needs, Practical Considerations, Safety Implications, Technical Solutions and Future Directions
Wednesday, 25 January 2012   by cdn.intechopen.com    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
MRI Resources 
MRA - Pregnancy - Equipment - Raman Spectroscopy - Safety Products - Stimulator pool
 
DixonInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
The Dixon technique is a MRI method used for fat suppression and/or fat quantification. The difference in magnetic resonance frequencies between fat and water-bound protons allows the separation of water and fat images based on the chemical shift effect.
This imaging technique is named after Dixon, who published in 1984 the basic idea to use phase differences to calculate water and fat components in postprocessing. Dixon's method relies on acquiring an image when fat and water are 'in phase', and another in 'opposed phase' (out of phase). These images are then added together to get water-only images, and subtracted to get fat-only images. Therefore, this sequence type can deliver up to 4 contrasts in one measurement: in phase, opposed phase, water and fat images. An additional benefit of Dixon imaging is that source images and fat images are also available to the diagnosing physician.
The original two point Dixon sequence (number of points means the number of images acquired at different TE) had limited possibilities to optimize the echo time, spatial resolution, slice thickness, and scan time; but Dixon based fat suppression can be very effective in areas of high magnetic susceptibility, where other techniques fail. This insensitivity to magnetic field inhomogeneity and the possibility of direct image-based water and fat quantification have currently generated high research interests and improvements to the basic method (three point Dixon).
The combination of Dixon with gradient echo sequences allows for example liver imaging with 4 image types in one breath hold. With Dixon TSE/FSE an excellent fat suppression with high resolution can be achieved, particularly useful in imaging of the extremities.
For low bandwidth imaging, chemical shift correction of fat images can be made before recombination with water images to produce images free of chemical shift displacement artifacts. The need to acquire more echoes lengthens the minimum scan time, but the lack of fat saturation pulses extends the maximum slice coverage resulting in comparable scan time.
spacer

• View the DATABASE results for 'Dixon' (8).Open this link in a new window

 
Further Reading:
  Basics:
Separation of fat and water signal in magnetic resonanace imaging
2011   by www.diva-portal.org    
Direct Water and Fat Determination in Two-Point Dixon Imaging
April 2013   by scholarship.rice.edu    
MRI evaluation of fatty liver in day to day practice: Quantitative and qualitative methods
Wednesday, 3 September 2014   by www.sciencedirect.com    
Measurement of Fat/Water Ratios in Rat Liver Using 3DThree-Point Dixon MRI
2004   by www.civm.duhs.duke.edu    
  News & More:
The utility of texture analysis of kidney MRI for evaluating renal dysfunction with multiclass classification model
Tuesday, 30 August 2022   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
mDIXON being developed to simplify and accelerate liver MRI
September 2010   by incenter.medical.philips.com    
Searchterm 'Imaging' was also found in the following services: 
spacer
News  (1520)  Resources  (268)  Forum  (88)  
 
High Field MRI
 
The principal advantage of MRI at high field is the increase in signal to noise ratio. This can be used to improve anatomic and/or temporal resolution and reduce scan time while preserving image quality. MRI devices for whole body imaging for human use are available up to 3 tesla (3T). Functional MRI (fMRI) and MR spectroscopy (MRS) benefit significantly. In addition, 3T machines have a great utility in applications such as TOF MRA and DTI. Higher field strengths are used for imaging of small parts of the body or scientific animal experiments. Higher contrast may permit reduction of gadolinium doses and, in some cases, earlier detection of disease.
Using high field MRI//MRS, the RF-wavelength and the dimension of the human body complicating the development of MR coils. The absorption of RF power causes heating of the tissue. The energy deposited in the patient's tissues is fourfold higher at 3T than at 1.5T. The specific absorption rate (SAR) induced temperature changes of the human body are the most important safety issue of high field MRI//MRS.
Susceptibility and chemical shift dispersion increase like T1, therefore high field MRI occasionally exhibits imaging artifacts. Most are obvious and easily recognized but some are subtle and mimic diseases. A thorough understanding of these artifacts is important to avoid potential pitfalls. Some imaging techniques or procedures can be utilized to remove or identify artifacts.

See also Diffusion Tensor Imaging.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
Medical-Ultrasound-Imaging.comMagnetic Resonance Guided Focused Ultrasound,  High Intensity Focused Ultrasound
spacer

• View the DATABASE results for 'High Field MRI' (16).Open this link in a new window


• View the NEWS results for 'High Field MRI' (9).Open this link in a new window.
 
Further Reading:
  Basics:
Next-generation 7 T scanner ramps the resolution of brain MR imaging
Wednesday, 17 January 2024   by physicsworld.com    
A paired dataset of T1- and T2-weighted MRI at 3 Tesla and 7 Tesla
Thursday, 27 July 2023   by www.nature.com    
CLINICAL WHOLE BODY MRI AT 3.0 T(.pdf)
2001
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
Impact of Magnetic Field Inhomogeneity on the Quality of Magnetic Resonance Images and Compensation Techniques: A Review
Saturday, 1 October 2022   by www.dovepress.com    
7-T clinical MRI of the shoulder in patients with suspected lesions of the rotator cuff
Friday, 7 February 2020   by eurradiolexp.springeropen.com    
A 100-hour MRI scan captured the most detailed look yet at a whole human brain
Monday, 8 July 2019   by www.sciencenews.or    
T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
Friday, 16 October 2015   by www.ncbi.nlm.nih.gov    
Ultra-high-field MRI reveals language centres in the brain in much more detail
Tuesday, 28 October 2014   by medicalxpress.com    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
High-Resolution, Spin-Echo BOLD, and CBF fMRI at 4 and 7 T(.pdf)
October 2002   by otg.downstate.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
MRI Resources 
Corporations - Coils - Resources - Software - Implant and Prosthesis - Libraries
 
Hitachi Medical Systems America Inc.(USA)/Hitachi Medical Corp.(Tokyo)MRI Resource Directory:
 - Manufacturers -
 
www.hitachimed.com [This entry is marked for removal.]

Hitachi Medical Systems America, Inc. (HMSA), was a major provider of magnetic resonance imaging systems in the United States. Hitachi had more than 2300 installed permanent magnet MR imaging systems worldwide. As a full-line supplier of medical imaging equipment in Japan, Hitachi Medical Corporation (HMC) founded HMSA to provide a direct link to the U.S. marketplace. Altaire™ , the open MR system from Hitachi, extends the family of open MRI products.

In December 2019 Japan's Fujifilm announced the acquisition of Hitachi's diagnostic imaging business for 179 billion yen ($1.63 billion). This includes Hitachi’s CT, MRI, X-ray, and ultrasound imaging operations, also its electronic health record business. Fujifilm expects the deal to close in July 2020 subject to regulatory clearances.

MRI Scanners:

spacer
 
Further Reading:
  News & More:
RSNA update on new MRI technology(.pdf)
February 2006   by www.magnet-mri.org    
Fujifilm to Acquire Hitachi's Diagnostic Imaging-related Business to Accelerate Growth of Its Healthcare Business
Wednesday, 18 December 2019   by www.fujifilm.com    
MRI Resources 
MRI Technician and Technologist Career - Libraries - Pediatric and Fetal MRI - MRI Reimbursement - MRI Physics - Breast MRI
 
previous      81 - 85 (of 475)     next
Result Pages : [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]  [16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]