Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Longitudinal Magnetization' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Longitudinal Magnetization' found in 1 term [] and 24 definitions []
1 - 5 (of 25)     next
Result Pages : [1]  [2 3 4 5]
MRI Resources 
RIS - Education pool - MRI Technician and Technologist Schools - Health - Pacemaker - Movies
 
Longitudinal Magnetization
 
(Mz) The component of the net magnetization vector in the direction of the static magnetic field (z). After RF excitation, this vector returns to its equilibrium value at a rate characterized by the time constant T1.
spacer
 
• Share the entry 'Longitudinal Magnetization':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Net Magnetization Vector
    • Longitudinal Relaxation
    • Relaxation Time
    • Magnetization
    • Spin Lattice Relaxation Time
MRI Resources 
Most Wanted - Online Books - Databases - Case Studies - Crystallography - Spectroscopy pool
 
Relaxation TimeForum -
related threads
 
After RF excitation the spins will tend to return to their equilibrium distribution in which there is no transverse magnetization and the longitudinal magnetization is at its maximum value and oriented in the direction of the static magnetic field. The transverse magnetization decays toward zero with a characteristic time constant T2, and the longitudinal magnetization returns toward equilibrium with a characteristic time constant T1.
spacer

• View the DATABASE results for 'Relaxation Time' (44).Open this link in a new window

 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
  News & More:
New technique could allow for safer, more accurate heart scans
Thursday, 10 December 2015   by www.gizmag.com    
MRI Resources 
Shoulder MRI - Distributors - Software - Liver Imaging - Manufacturers - Resources
 
Saturation Recovery
 
(SR) Particular type of partial saturation pulse sequence in which the preceding pulses leave the spins in a state of saturation, so that recovery at the time of the next pulse has taken place from an initial condition of no magnetization. A rare used MRI pulse sequence that generates a predominantly proton density dependent signal, basically employing a 90° RF excitation pulse, with a very long repetition time. With this technique T1 times can be measured faster than with inversion recovery pulse sequences.
This saturation recovery sequence consists of multiple 90° radio frequency (RF) pulses with a short repetition time. A spoiler gradient pulse dephases the longitudinal magnetization that remains after the first 90° radio frequency pulse. A repetition time interval after the application of this spoiling gradient turns an additional 90° pulse the new developed longitudinal magnetization into the transverse plane, followed by recording a gradient echo.
spacer

• View the DATABASE results for 'Saturation Recovery' (5).Open this link in a new window

 
Further Reading:
  Basics:
Contrast mechanisms in magnetic resonance imaging
2004   by www.iop.org    
MRI Resources 
Absorption and Emission - Manufacturers - MRI Centers - Research Labs - Musculoskeletal and Joint MRI - Colonography
 
Spin Lattice Relaxation Time
 
(T1) The spin lattice relaxation time (also called longitudinal relaxation time and T1 Time) is a spin property, whereby the value changes between different tissues. By the spin lattice relaxation process, the longitudinal magnetization Mz achieve the equilibrium value Mz0. The T1 time constant is an exponential approach toward Mz0.
The equation for the magnetization at a time t will be (if at t=0 the longitudinal magnetization is Mz0):
Mz(t) = M0+(Mz (0) - Mz0) exp(t/T1)
spacer

• View the DATABASE results for 'Spin Lattice Relaxation Time' (2).Open this link in a new window

 
Further Reading:
  Basics:
Electron Spin Resonance
   by hyperphysics.phy-astr.gsu.edu    
  News & More:
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
MULTIEXPONENTIAL PROTON SPIN-SPIN RELAXATION IN MAGNETIC RESONANCE IMAGING OF HUMAN BRAIN TUMORS
Friday, 26 March 1999   by www.dkfz-heidelberg.de    
MRI Resources 
Shoulder MRI - Pediatric and Fetal MRI - Service and Support - Guidance - Used and Refurbished MRI Equipment - Portals
 
T1 TimeForum -
related threads
 
The T1 relaxation time (also called spin lattice or longitudinal relaxation time), is a biological parameter that is used in MRIs to distinguish between tissue types. This tissue-specific time constant for protons, is a measure of the time taken to realign with the external magnetic field. The T1 constant will indicate how quickly the spinning nuclei will emit their absorbed RF into the surrounding tissue.
As the high-energy nuclei relax and realign, they emit energy which is recorded to provide information about their environment. The realignment with the magnetic field is termed longitudinal relaxation and the time in milliseconds required for a certain percentage of the tissue nuclei to realign is termed 'Time 1' or T1. Starting from zero magnetization in the z direction, the z magnetization will grow after excitation from zero to a value of about 63% of its final value in a time of T1. This is the basic of T1 weighted images.
The T1 time is a contrast determining tissue parameter. Due to the slow molecular motion of fat nuclei, longitudinal relaxation occurs rather rapidly and longitudinal magnetization is regained quickly. The net magnetic vector realigns with B0 leading to a short T1 time for fat.
Water is not as efficient as fat in T1 recovery due to the high mobility of the water molecules. Water nuclei do not give up their energy to the lattice (surrounding tissue) as quickly as fat, and therefore take longer to regain longitudinal magnetization, resulting in a long T1 time.

See also T1 Weighted Image, T1 Relaxation, T2 Weighted Image, and Magnetic Resonance Imaging MRI.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 2  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T2 And T1  Open this link in a new window
 Brain MRI Images T1  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'T1 Time' (15).Open this link in a new window

 
Further Reading:
  Basics:
IMAGE CONTRAST IN MRI(.pdf)
   by www.assaftal.com    
A practical guideline for T1 reconstruction from various flip angles in MRI
Saturday, 1 October 2016   by journals.sagepub.com    
Magnetic resonance imaging - From Wikipedia, the free encyclopedia.
   by en.wikipedia.org    
  News & More:
New technique could allow for safer, more accurate heart scans
Thursday, 10 December 2015   by www.gizmag.com    
Rockland Technimed: Tissue Viability Imaging
Saturday, 15 December 2007   by www.onemedplace.com    
MRI Resources 
MRA - Portals - RIS - Collections - Shoulder MRI - Patient Information
 
     1 - 5 (of 25)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]