Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'MRI Picture' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'MRI Picture' found in 0 term [] and 3 definitions [], (+ 7 Boolean[] results
previous     6 - 10 (of 10)     
Result Pages : [1]  [2]
Searchterm 'MRI Picture' was also found in the following services: 
spacer
News  (26)  Resources  (3)  Forum  (3)  
 
Brain MRIForum -
related threadsMRI Resource Directory:
 - Brain MRI -
 
Brain imaging, magnetic resonance imaging of the head or skull, cranial magnetic resonance tomography (MRT), neurological MRI - they describe all the same radiological imaging technique for medical diagnostic.
Magnetic resonance imaging of the human brain includes the anatomic description and the detection of lesions. Special techniques like diffusion weighted imaging, functional magnetic resonance imaging (fMRI) and spectroscopy provide also information about the function and chemical metabolites of the brain. MRI provides detailed pictures of brain and nerve tissues in multiple planes without obstruction by overlying bones. Brain MRI is the procedure of choice for most brain disorders. It provides clear images of the brainstem and posterior brain, which are difficult to view on a CT scan. It is also useful for the diagnosis of demyelinating disorders (disorders such as multiple sclerosis (MS) that cause destruction of the myelin sheath of the nerve).
With this noninvasive procedure also the evaluation of blood flow and the flow of cerebrospinal fluid (CSF) is possible. Different MRA methods, also without contrast agents can show a venous or arterial angiogram. MRI can distinguish tumors, inflammatory lesions, and other pathologies from the normal brain anatomy. However, MRI scans are also used instead other methods to avoid the dangers of interventional procedures like angiography (DSA - digital subtraction angiography) as well as of repeated exposure to radiation as required for computed tomography (CT) and other X-ray examinations.
A (birdcage) bird cage coil achieves uniform excitation and reception and is commonly used to study the brain. Usually a brain MRI procedure includes FLAIR, T2 weighted and T1 weighted sequences in two or three planes.

See also Fetal MRI, Fluid Attenuation Inversion Recovery (FLAIR), Perfusion Imaging and High Field MRI.
See also Arterial Spin Labeling.
 
Images, Movies, Sliders:
 Brain MRI Images Axial T2  Open this link in a new window
      

 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Orbita  Open this link in a new window
      

 Brain MRI Images T1  Open this link in a new window
 MRI of the Brain Stem with Temoral Bone and Auditory System  Open this link in a new window
    
SlidersSliders Overview

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
Medical-Ultrasound-Imaging.comA-Mode
spacer
 
• Related Searches:
    • Functional Magnetic Resonance Imaging
    • Spine MRI
    • Blood Flow Imaging
    • Magnetic Resonance Myelography
    • Blood Brain Barrier
 
Further Reading:
  Basics:
New MRI technique offers faster diagnosis of multiple sclerosis
Monday, 1 February 2016   by medicalxpress.com    
Ultra-high-field MRI reveals language centres in the brain in much more detail
Tuesday, 28 October 2014   by medicalxpress.com    
A Dutch study has revealed that as many as 13% of healthy adults may have some type of undiagnosed abnormality in the brain.
Sunday, 4 November 2007   by www.news-medical.net:80    
  News & More:
MRI Reveals Significant Brain Abnormalities Post-COVID
Monday, 21 November 2022   by neurosciencenews.com    
Combining genetics and brain MRI can aid in predicting chances of Alzheimer's disease
Wednesday, 29 June 2022   by www.sciencedaily.com    
Roundup: How Even Mild COVID Can Affect the Brain; This Many Daily Steps Improves Longevity; and More
Friday, 11 March 2022   by baptisthealth.net    
A low-cost and shielding-free ultra-low-field brain MRI scanner
Tuesday, 14 December 2021   by www.nature.com    
Large International Study Reveals Spectrum of COVID-19 Brain Complications
Tuesday, 9 November 2021   by www.itnonline.com    
Brain MRI-Based Subtypes of MS Predict Disability Progression, Treatment Response
Thursday, 13 May 2021   by www.neurologyadvisor.com    
New MRI method improves detection of disease changes in the brain's network
Thursday, 11 June 2020   by www.compute.dtu.dk    
New NeuroCOVID Classification System Uses MRI to Categorize Patients
Friday, 12 June 2020   by www.diagnosticimaging.com    
New MRI technique can 'see' molecular changes in the brain
Thursday, 5 September 2019   by medicalxpress.com    
Talking therapy or medication for depression: Brain scan may help suggest better treatment
Monday, 27 March 2017   by www.newsnation.in    
MRI identifies brain abnormalities in chronic fatigue syndrome patients
Wednesday, 29 October 2014   by www.eurekalert.org    
MRIs Useful in Tracking Depression in MS Patients
Tuesday, 1 July 2014   by www.hcplive.com    
Contrast agent linked with brain abnormalities on MRI
Tuesday, 17 December 2013   by www.sciencecodex.com    
MRIs Reveal Signs of Brain Injuries Not Seen in CT Scans
Tuesday, 18 December 2012   by www.sciencedaily.com    
Iron Deposits in the Brain May Be Early Indicator of MS
Wednesday, 13 November 2013   by www.healthline.com    
Migraine Sufferers Have Thicker Brain Cortex
Tuesday, 20 November 2007   by www.medicalnewstoday.com    
MRI Resources 
Homepages - Fluorescence - Stent - IR - Intraoperative MRI - Lung Imaging
 
FerumoxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Short name: AMI-25, generic name: Ferumoxide (SPIO)
Ferumoxides are superparamagnetic (T2*) MRI contrast agents, so the largest signal change is on T2 and T2* weighted images.
The agent distributes relatively rapidly to organs with reticuloendothelial cells primarily the liver, spleen and bone marrow. The liver shows decreased signal intensity, as does the spleen and marrow. The agent is taken up by the normal liver, resulting in increased CNR between tumor and normal liver. Hepatocellular lesions, such as adenoma or focal nodular hyperplasia, contain reticuloendothelial cells, so they will behave similar to the liver, with decreased signal on T2 weighted images. On T1 images, there is typically some circulating contrast agent, and blood vessels show increased signal intensity.
Current MRI protocols involve T1 weighted breath-hold gradient echo images of the liver, and fast spin echo T2 weighted pictures. This requires about 15 minutes. The patient is then removed from the scanner, and the contrast agent administered. After contrast administration, the same pulse sequences are again repeated.
spacer

• View the DATABASE results for 'Ferumoxide' (5).Open this link in a new window

 
Further Reading:
  Basics:
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
MRI Resources 
MRI Physics - IR - Coils - Used and Refurbished MRI Equipment - Journals - Societies
 
Medical Imaging
 
The definition of imaging is the visual representation of an object. Medical imaging began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette. The next development involved the use of fluorescent screens and special glasses to see x-ray images in real time.
A major development was the application of contrast agents for a better image contrast and organ visualization. In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This medical imaging technology allows information of biologic processes in vivo. Today, PET and SPECT play an important role in both clinical research and diagnosis of biochemical and physiologic processes. In 1955, the first x-ray image intensifier allowed the pick up and display of x-ray movies.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasonic waves generated by a quartz crystal are reflected at the interfaces between different tissues, received by the ultrasound machine, and turned into pictures with the use of computers and reconstruction software. Ultrasound imaging is an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast agents, real-time 3D ultrasound imaging, and molecular imaging.
Digital imaging techniques were implemented in the 1970s into conventional fluoroscopic image intensifier and by Godfrey Hounsfield with the first computed tomography. Digital images are electronic snapshots sampled and mapped as a grid of dots or pixels. The introduction of x-ray CT revolutionised medical imaging with cross sectional images of the human body and high contrast between different types of soft tissue. These developments were made possible by analog to digital converters and computers. The multislice spiral CT technology has expands the clinical applications dramatically.
The first MRI devices were tested on clinical patients in 1980. The spread of CT machines is the spur to the rapid development of MRI imaging and the introduction of tomographic imaging techniques into diagnostic nuclear medicine. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.
Today, imaging in medicine has advanced to a stage that was inconceivable 100 years ago, with growing medical imaging modalities:
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)

All this type of scans are an integral part of modern healthcare. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in picture archiving and communication systems (PACS). In telemedicine, healthcare professionals are linked over a computer network. Using cutting-edge computing and communications technologies, in videoconferences, where audio and visual images are transmitted in real time, medical images of MRI scans, x-ray examinations, CT scans and other pictures are shareable.
See also Hybrid Imaging.

See also the related poll results: 'In 2010 your scanner will probably work with a field strength of', 'MRI will have replaced 50% of x-ray exams by'
Radiology-tip.comradDiagnostic Imaging
spacer
Medical-Ultrasound-Imaging.comMedical Imaging
spacer

• View the DATABASE results for 'Medical Imaging' (20).Open this link in a new window


• View the NEWS results for 'Medical Imaging' (81).Open this link in a new window.
 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Medical imaging shows cost control problem
Tuesday, 6 November 2012   by www.mysanantonio.com    
  News & More:
iMPI: An Exploration of Post-Launch Advancements
Friday, 29 September 2023   by www.diagnosticimaging.com    
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
Positron Emission Tomographic Imaging in Stroke
Monday, 28 December 2015   by www.ncbi.nlm.nih.gov    
Multiparametric MRI for Detecting Prostate Cancer
Wednesday, 17 December 2014   by www.onclive.com    
Combination of MRI and PET imaging techniques can prevent second breast biopsy
Sunday, 29 June 2014   by www.news-medical.net    
3D-DOCTOR Tutorial
   by www.ablesw.com    
Searchterm 'MRI Picture' was also found in the following services: 
spacer
News  (26)  Resources  (3)  Forum  (3)  
 
Image Resolution
 
The image resolution is the level of detail of an image and a measurement of image quality. Higher resolution means more image detail, for example when two structures 1 mm apart are distinguishable in an image, this picture has a higher resolution than an image where they are not to distinguish.
More data points in an MR image (with same FOV) will decrease the pixel size, but not accurately improve the resolution because the different MRI sequences influence the contrast and the discernment of different tissues. With high contrast and optimal signal to noise ratio, the image resolution is depend on FOV and number of data points of a picture, but T2* effects have an additional influence.
spacer

• View the DATABASE results for 'Image Resolution' (9).Open this link in a new window


• View the NEWS results for 'Image Resolution' (1).Open this link in a new window.
 
Further Reading:
  Basics:
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
MRI Resources 
Universities - Safety Training - Devices - Mobile MRI Rental - Spectroscopy pool - Portals
 
MRI EquipmentInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
The MRI equipment consists of following components:
The magnet generates the magnetic field.
Shim coils make the magnetic field homogeneous.
Radio frequency coils transmit the radio signal into the body part being imaged.
Receiver coils detect the returning radio signals.
Gradient coils provide spatial localization of the signals.
Shielding coils produce a magnetic field that cancels the field from primary coils in regions where it is not desired.
The computer reconstructs the signals into the image.
The MRI scanner room is shielded by a faraday shield.
Different cooling systems cool the magnet, the scanner room and the technique room.

Better MRI equipment and software design along with the latest information technology improves system maintenance and overall communication. Software and digital imaging and communications in medicine (DICOM) compatibility allows to network into hospital databases, helps to modify pulse sequences, data post processing, and archiving via picture archiving and communication system (PACS).

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Radiography
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Ultrasound System Performance
spacer

• View the DATABASE results for 'MRI Equipment' (13).Open this link in a new window


• View the NEWS results for 'MRI Equipment' (4).Open this link in a new window.
 
Further Reading:
  News & More:
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
MRI safety targeted as new group offers credentialing test
Monday, 12 January 2015   by www.modernhealthcare.com    
Audio/Video System helps patients relax during MRI scans
Monday, 8 December 2014   by news.thomasnet.com    
Dräger introduces anaesthesia system for MRI environment
Wednesday, 12 December 2007   by www.mtbeurope.info    
MRI Resources 
Directories - Mobile MRI Rental - Nerve Stimulator - Artifacts - Stent - MR Guided Interventions
 
previous      6 - 10 (of 10)     
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]