Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Mangafodipir' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Mangafodipir' found in 1 term [] and 5 definitions []
1 - 5 (of 6)     next
Result Pages : [1]  [2]
Searchterm 'Mangafodipir' was also found in the following service: 
spacer
News  (2)  
 
Mangafodipir TrisodiumInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Short name: Mn-DPDP
This MRI contrast agent is a chelate complex of the paramagnetic metal ion manganese (Mn) and fodipir. Mn-DPDP (Teslascan) shortens the longitudinal relaxation time and is used for the T1 weighted enhancement of MR images. Mangafodipir trisodium accumulates after intravenous injection in the healthy tissue of the liver and improves the detection, localization, characterization, and evaluation of lesions of the liver, pancreas, but can also be used in cardiac MRI.
See also Hepatobiliary Chelates and Teslascan®.
The United States Food and Drug Administration (FDA) has granted marketing clearance 1997, to Nycomed Amersham's MRI contrast medium. Nycomed/Amersham, now GE Healthcare markets the product under the trade name Teslascan®.
spacer
 
• Share the entry 'Mangafodipir Trisodium':  Facebook  Twitter  LinkedIn  

• View the NEWS results for 'Mangafodipir Trisodium' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Teslascan Pharmacology, Pharmacokinetics, Studies, Metabolism - Mangafodipir - RxList Monograph
   by www.rxlist.com    
Mangafodipir (Systemic)
2003   by www.drugs.com    
  News & More:
Diagnosis and staging of pancreatic cancer: comparison of mangafodipir trisodium-enhanced MR imaging and contrast-enhanced helical hydro-CT.
2002
MRI Resources 
MR Myelography - Anatomy - Implant and Prosthesis - MRI Reimbursement - Hospitals - Knee MRI
 
Teslascan®InfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
(Mn-DPDP) This agent, mangafodipir trisodium, is a hepatocyte specific MRI contrast agent. Manganese is very toxic, so it has to be chelated and put in the form of a vitamin B6 analog, which is taken up by normal hepatocytes to some extent.
Teslascan® was developed in the early 1980's, went through clinical trials in the early 1990's, and was approved in 1997. One problem with assessing the efficacy of this agent is the fact that the phase III trials finished in the early 1990's, and the techniques used for MR today are very different from the techniques used almost a decade ago.
This contrast agent shortens the T1 relaxation time. On T1 weighted pictures it makes a normal liver look brighter. Since metastases, for example, do not generally take up this agent, the contrast between the enhancing liver and the non-enhancing lesions will increase on T1 weighted pictures. It does not have much effect on T2 weighted images.
Drug Information and Specification
NAME OF COMPOUND
Mangafodipir trisodium, Manganese dipyroxyl diphosphate, MN-DPDP
DEVELOPER
CENTRAL MOIETY
Mn2+
CONTRAST EFFECT
T1, Predominantly positive enhancement
r1=2.3, r2=4.0, B0=1.0 T
PHARMACOKINETIC
Hepatobiliary, pancreatic, adrenal
290 mosm/kgH2O
CONCENTRATION
0.01 mmol/L
DOSAGE
5 µmol/kg, 0.5 ml/kg
PREPARATION
Finished product
INDICATION
Liver lesions
DEVELOPMENT STAGE
Approved
DISTRIBUTOR
See below
PRESENTATION
Vials of 100 ml
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
USA
Teslascan®
for sale
EU
Teslascan®
for sale
spacer

• View the DATABASE results for 'Teslascan®' (4).Open this link in a new window

 
Further Reading:
  Basics:
EMEA - Teslascan - SCIENTIFIC DISCUSSION(.pdf)
   by www.emea.europa.eu    
  News & More:
Diagnosis and staging of pancreatic cancer: comparison of mangafodipir trisodium-enhanced MR imaging and contrast-enhanced helical hydro-CT.
2002
MAGNETIC RESONANCE IMAGING OF FOCAL LIVER LESIONS(.pdf)
2002
MRI Resources 
Distributors - Bioinformatics - Mobile MRI Rental - Education - Lung Imaging - Spectroscopy
 
Contrast AgentsForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agents are chemical substances introduced to the anatomical or functional region being imaged, to increase the differences between different tissues or between normal and abnormal tissue, by altering the relaxation times. MRI contrast agents are classified by the different changes in relaxation times after their injection.
•
Positive contrast agents cause a reduction in the T1 relaxation time (increased signal intensity on T1 weighted images). They (appearing bright on MRI) are typically small molecular weight compounds containing as their active element Gadolinium, Manganese, or Iron. All of these elements have unpaired electron spins in their outer shells and long relaxivities.
Some typical contrast agents as gadopentetate dimeglumine, gadoteridol, and gadoterate meglumine are utilized for the central nervous system and the complete body; mangafodipir trisodium is specially used for lesions of the liver and gadodiamide for the central nervous system.
•
Negative contrast agents (appearing predominantly dark on MRI) are small particulate aggregates often termed superparamagnetic iron oxide (SPIO). These agents produce predominantly spin spin relaxation effects (local field inhomogeneities), which results in shorter T1 and T2 relaxation times.
SPIO's and ultrasmall superparamagnetic iron oxides (USPIO) usually consist of a crystalline iron oxide core containing thousands of iron atoms and a shell of polymer, dextran, polyethyleneglycol, and produce very high T2 relaxivities. USPIOs smaller than 300 nm cause a substantial T1 relaxation. T2 weighted effects are predominant.
•
A special group of negative contrast agents (appearing dark on MRI) are perfluorocarbons (perfluorochemicals), because their presence excludes the hydrogen atoms responsible for the signal in MR imaging.

The design objectives for the next generation of MR contrast agents will likely focus on prolonging intravascular retention, improving tissue targeting, and accessing new contrast mechanisms. Macromolecular paramagnetic contrast agents are being tested worldwide. Preclinical data shows that these agents demonstrate great promise for improving the quality of MR angiography, and in quantificating capillary permeability and myocardial perfusion.
Ultrasmall superparamagnetic iron oxide (USPIO) particles have been evaluated in multicenter clinical trials for lymph node MR imaging and MR angiography, with the clinical impact under discussion. In addition, a wide variety of vector and carrier molecules, including antibodies, peptides, proteins, polysaccharides, liposomes, and cells have been developed to deliver magnetic labels to specific sites. Technical advances in MR imaging will further increase the efficacy and necessity of tissue-specific MRI contrast agents.

See also Adverse Reaction and Nephrogenic Systemic Fibrosis.

See also the related poll result: 'The development of contrast agents in MRI is'
 
Images, Movies, Sliders:
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 MR Colonography Gadolinium per Rectum  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradContrast Agents,  Safety of Contrast Agents
spacer
Medical-Ultrasound-Imaging.comUltrasound Contrast Agents,  Ultrasound Contrast Agent Safety
spacer

• View the DATABASE results for 'Contrast Agents' (122).Open this link in a new window


• View the NEWS results for 'Contrast Agents' (25).Open this link in a new window.
 
Further Reading:
  Basics:
Analysis of MRI contrast agents
Thursday, 17 November 2022   by www.sciencedaily.com    
New guidelines urge caution on use of contrast agents during MR scans
Tuesday, 8 August 2017   by www.dotmed.com    
New Study Sheds Light on Safety of Gadolinium-Based Contrast Agents
Wednesday, 29 November 2017   by www.empr.com    
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Manganese-based MRI contrast agents: past, present and future
Friday, 4 November 2011   by www.ncbi.nlm.nih.gov    
  News & More:
Brain imaging method may aid mild traumatic brain injury diagnosis
Tuesday, 16 January 2024   by parkinsonsnewstoday.com    
A Targeted Multi-Crystalline Manganese Oxide as a Tumor-Selective Nano-Sized MRI Contrast Agent for Early and Accurate Diagnosis of Tumors
Thursday, 18 January 2024   by www.dovepress.com    
FDA Approves Gadopiclenol for Contrast-Enhanced Magnetic Resonance Imaging
Tuesday, 27 September 2022   by www.pharmacytimes.com    
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol
Saturday, 5 February 2022   by www.ncbi.nlm.nih.gov    
Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles
Tuesday, 11 January 2022   by pubmed.ncbi.nlm.nih.gov    
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
Gadopiclenol: positive results for Phase III clinical trials
Monday, 29 March 2021   by www.pharmiweb.co    
Gadolinium-Based Contrast Agents Hypersensitivity: A Case Series
Friday, 4 December 2020   by www.dovepress.com    
Polysaccharide-Core Contrast Agent as Gadolinium Alternative for Vascular MR
Monday, 8 March 2021   by www.diagnosticimaging.com    
Water-based non-toxic MRI contrast agents
Monday, 11 May 2020   by chemistrycommunity.nature.com    
New method to detect early-stage cancer identified by Georgia State, Emory research team
Friday, 7 February 2020   by www.eurekalert.org    
Researchers Brighten Path for Creating New Type of MRI Contrast Agent
Friday, 7 February 2020   by www.newswise.com    
Manganese-based MRI contrast agent may be safer alternative to gadolinium-based agents
Wednesday, 15 November 2017   by www.eurekalert.org    
Sodium MRI May Show Biomarker for Migraine
Friday, 1 December 2017   by psychcentral.com    
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
For MRI, time is of the essence A new generation of contrast agents could make for faster and more accurate imaging
Tuesday, 28 June 2011   by scienceline.org    
Searchterm 'Mangafodipir' was also found in the following service: 
spacer
News  (2)  
 
Hepatobiliary ChelatesInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Hepatobiliary chelates used in MRI are paramagnetic contrast agents consisting of a metal ion bound to an organic ligand. Paramagnetic metal ions such as gadolinium improve the MRI signal, but the toxicity of these uncomplexed metal ions makes the use of a chelate to bind the metal ion essential. Due to the hepatocyte uptake of this chelate complex, the different contrast between normal parenchyma and liver lesions improves the detection and characterization of specific diseases. In addition, the hepatobiliary excretion allows the assessment of the hepatobiliary system.
Chelates for hepatobiliary imaging: MultiHance® (Gadobenate Dimeglumine), Teslascan® (Mangafodipir Trisodium), Gd-HIDA, Cr-HIDA, and Fe-EHPG IronIII or other derivatives.

See also Hepatobiliary Contrast Agents, Liver Imaging.
spacer

• View the DATABASE results for 'Hepatobiliary Chelates' (6).Open this link in a new window

MRI Resources 
Colonography - Veterinary MRI - Societies - Portals - MRCP - Guidance
 
Intracellular Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Contrast agent with a preferential intracellular distribution.
Intracellular agents (such as manganese derivatives and ultrasmall superparamagnetic iron oxide), exhibit a flow- and metabolism-dependent uptake. These properties may allow delayed imaging, similar to isotopic methods.
Phospholipid liposomes are rapidly sequestered by the cells in the reticuloendothelial system (RES), primarily in the liver. For imaging of the liver, liposomes may be labeled with MR contrast medium, both positive (T1-shortening) paramagnetic media, and negative (T2-shortening) superparamagnetic media.
Several other nonliposome MR contrast media are also taken up by the RES, e.g.:
Other MR contrast agents accumulate selectively in the hepatocytes, e.g.:
gadoxetic acid (Gd-EOB-DTPA)
spacer

• View the DATABASE results for 'Intracellular Contrast Agents' (3).Open this link in a new window

 
Further Reading:
  News & More:
Manganese enhanced MRI provides more accurate details of heart function after a heart attack
Tuesday, 11 May 2021   by www.news-medical.net    
MRI Resources 
Knee MRI - Raman Spectroscopy - Mobile MRI - Veterinary MRI - Blood Flow Imaging - Homepages
 
     1 - 5 (of 6)     next
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]