Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Nuclear Magnetic Resonance' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Nuclear Magnetic Resonance' found in 4 terms [] and 8 definitions [], (+ 8 Boolean[] results
previous     16 - 20 (of 20)     
Result Pages : [1]  [2 3]  [4]
Searchterm 'Nuclear Magnetic Resonance' was also found in the following services: 
spacer
News  (24)  Resources  (31)  
 
Siemens Medical Systems
 
www.siemensmedical.com The range of diagnostics and imaging systems of Siemens Medical Systems covers ultrasound, nuclear medicine, angiography, magnetic resonance, computer tomography and patient monitoring. Siemens is one of the three leading MRI manufacturers, which together account for approximately 80 percent of the MRI machines installed worldwide. Siemens currently offers the Allegra 3T MRI, which is for head scanning only, but the company will also be launching the Trio MRI, a 3T whole body scanner.
Siemens has formed partnerships with more than ten research institutions and private practitioners to define a comprehensive MRI examination and compare MR to currently established cardiovascular modalities, thereby defining optimal diagnosis and treatment.

MRI Scanners:

0.2T to 1.0T:
1.5T:
3.0T to 7.0T:
Hybrid Scanners:
•

Mobile Solutions:
•
MAGNETOM Espree 1.5T, MAGNETOM Avanto 1.5T and MAGNETOM ESSENZA 1.5T are also offered by Siemens on certified trailers.
Contact Information
MAIL
Siemens Medical Solutions Health Services Corporation
51 Valley Stream Parkway
Malvern, PA 19355
USA
PHONE
+1 610 219 6300
FAX
+1 610 219 8266
spacer

• View the NEWS results for 'Siemens Medical Systems' (3).Open this link in a new window.
 
Further Reading:
  Basics:
Siemens Announces FDA Clearance of Magnetom Amira MRI Scanner
Thursday, 21 January 2016   by www.itnonline.com    
  News & More:
siemens-healthineers-and-ucsf-research-partnership-proves-significant-energy-cost
Thursday, 27 April 2023   by www.itnonline.com    
KinetiCor Wins FDA 510(k) Clearance for Motion Correction System for Siemens MAGNETOM Skyra 3T Scanner
Wednesday, 19 February 2020   by finance.yahoo.com    
Ultra-Fast MRI Is Effective in Acute Neurological Emergency Diagnoses
Wednesday, 15 January 2020   by www.diagnosticimaging.com    
Siemens Working on Automated Planning of Cardiac MRI Views
Friday, 8 March 2013   by www.medgadget.com    
The Most Exciting Equation in MRI Siemens MAGNETOM Verio Combines High-Field Imaging and a 70-cm Open-Bore Design
Wednesday, 31 October 2007   by www.biospace.com    
MRI Resources 
Spine MRI - Guidance - Jobs pool - Stent - Nerve Stimulator - Databases
 
Ultrasmall Superparamagnetic Iron OxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(USPIO) The class of the ultrasmall superparamagnetic iron oxide includes several chemically and pharmacologically very distinct materials, which may or may not be interchangeable for a specific use. Some ultrasmall SPIO particles (median diameter less than 50nm) are used as MRI contrast agents (Sinerem®, Combidex®), e.g. to differentiate metastatic from inflammatory lymph nodes. USPIO shows also potential for providing important information about angiogenesis in cancer tumors and could possibly complement MRI helping physicians to identify dangerous arteriosclerosis plaques.
Because of the disadvantageous large T2*//T1 ratio, USPIO compounds are less suitable for arterial bolus contrast enhanced magnetic resonance angiography than gadolinium complexes. The tiny ultrasmall superparamagnetic iron oxides do not accumulate in the RES system as fast as larger particles, which results in a long plasma half-life. USPIO particles, with a small median diameter (less than 10 nm), will accumulate in lymph nodes after an intravenous injection by e.g. direct transcapillary passage through endothelial venules. Once within the nodal parenchyma, phagocytic cells of the mononuclear phagocyte system take up the particles.
As a second way, USPIOs are subsequently taken up from then interstitium by lymphatic vessels and transported to regional lymph nodes. A lymph node with normal phagocytic function takes up a considerable amount and shows a reduction of the signal intensity caused by T2 shortening effects and magnetic susceptibility. Caused by the small uptake of the USPIOs in metastatic lymph nodes, they appear with less signal reduction, and permit the differentiation of healthy lymph nodes from normal-sized, metastatic nodes.

See also Superparamagnetic Contrast Agents, Superparamagnetic Iron Oxide, Very Small Superparamagnetic Iron Oxide Particles, Blood Pool Agents, Intracellular Contrast Agents.
spacer

• View the DATABASE results for 'Ultrasmall Superparamagnetic Iron Oxide' (16).Open this link in a new window


• View the NEWS results for 'Ultrasmall Superparamagnetic Iron Oxide' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
  News & More:
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
10 SUMMARY AND FUTURE PERSPECTIVES
   by dissertations.ub.rug.nl    
MRI Resources 
Liver Imaging - Process Analysis - Fluorescence - Breast Implant - Crystallography - Veterinary MRI
 
Chemical Shift
 
Chemical shift depends on the nucleus and its environment and is defined as nuclear shielding / applied magnetic field. Nuclei are shielded by a small magnetic field caused by circulating electrons, termed nuclear shielding. The strength of the shield depends on the different molecular environment in that the nucleus is embedded. Nuclear shielding is the difference between the magnetic field at the nucleus and the applied magnetic field.
Chemical shift is measured in parts per million (ppm) of the resonance frequency relative to another or a standard resonance frequency.
The major part of the MR signal comes from hydrogen protons; lipid protons contribute a minor part. The chemical shift between water and fat nuclei is about 3.5 ppm (~220 Hz; 1.5T). Through this difference in resonance frequency between water and fat protons at the same location, a misregistration (dislocation) by the Fourier Transformation take place, when converting MR signals from frequency to spatial domain. This effect is called chemical shift artifact or chemical shift misregistration artifact.
spacer

• View the DATABASE results for 'Chemical Shift' (29).Open this link in a new window

 
Further Reading:
  Basics:
FUNDAMENTALS OF MRI: Part III – Forming an MR Image
   by www.e-radiography.net    
Abdominal MRI at 3.0 T: The Basics Revisited
Wednesday, 20 July 2005   by www.ajronline.org    
Searchterm 'Nuclear Magnetic Resonance' was also found in the following services: 
spacer
News  (24)  Resources  (31)  
 
Elscint Ltd.MRI Resource Directory:
 - Manufacturers -
 
Founded in 1969, Elscint is headquartered in Haifa, Israel. Elscint developed advanced computerized imaging systems in Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Nuclear Medicine (NM) and Mammography (MAM) for international markets.
In November 1998, General Electric Medical Systems (GEMS) acquired the Nuclear Medicine and MRI divisions of Elscint, including an unique MRI gradient system concept and technology (twin gradient system).
Elscint Ltd. signs definitive agreement to sell its Nuclear Medicine and Magnetic Resonance Imaging Businesses for $100 Million. Elscint's shareholders approved the sale of its NM, and MRI division to GE (now GE Healthcare). Picker International acquires the Computed Tomography Division of Elscint Ltd. in the same year.

See also Marconi Medical Systems.
spacer
 
Further Reading:
  Basics:
Elscint's Shareholders Approved The Sale of its NM, MRI and CT Division To GE and Picker
Monday, 23 November 1998   by www.prnewswire.com    
  News & More:
Twin Gradient Technology - Potential Advantages For Diffusion Weighted MRI(.pdf)
   by www.paulrharvey.co.uk    
MRI Resources 
Patient Information - Pacemaker - Education pool - MR Myelography - Developers - Shoulder MRI
 
Ventilation AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Inert hyperpolarized gases are under development for imaging air spaces, including those in the lungs. Because they mostly contain air and water, lungs are difficult organs to image.
These ventilation agents (gases) have potential in lung imaging and are currently used in studies of the pulmonary ventilation:
•
perfluorinated gases
•
aerosolized gadolinium-DTPA
•
hyperpolarized gases (xenon-129, helium-3)
•
molecular oxygen

Specific isotopes of inert gases can be hyperpolarized. Hyperpolarized is a state in which almost all of the atoms nuclei are spinning in the same direction. Once the nuclei in the isotope 3He have been hyperpolarized using a laser, they remain in this state for several days. The inert, hyperpolarized gas can then be used in a lung imaging study, where the high concentration of polarized nuclei provides a sharp contrast in MRI. The technique is already being developed with a view to commercialization by Magnetic Imaging Technologies in Durham, North Carolina. According to the company, existing MRI equipment can be used with a few minor modifications, along with a gas polarizer. The technique could provide early detection and monitoring of pulmonary disease.
Hyperpolarized 129Xe can also be used as a magnetic resonance tracer because of its MR-enhanced sensitivity combined with its high solubility. This isotope differs from 3He in that it can dissolve in the blood. Strong enhancement of the nuclear spin polarization of xenon in the gas phase can be achieved by optical pumping of rubidium and subsequent spin-exchange with the xenon nuclei. This technique can increase the magnetic resonance signal of xenon by five orders of magnitude, thus allowing NMR detection of xenon in very low concentration. MR spectroscopy and imaging of optically polarized xenon shows considerable potential for medical applications (see also back projection imaging).
Nycomed Amersham anticipated the market for inert gases in pulmonary imaging. The company obtained an exclusive license for the use of helium (He) and xenon (Xe) as MRI contrast agents. Currently, the US FDA has not yet approved the commercial distribution of inert gas imaging equipment, because the technique is still undergoing trials.
spacer

• View the DATABASE results for 'Ventilation Agents' (3).Open this link in a new window

 
Further Reading:
  Basics:
New oxygen-enhanced MRI scan 'helps identify most dangerous tumours'
Thursday, 10 December 2015   by www.dailymail.co.uk    
Low-Field MRI of Laser Polarized Noble Gas
   by xenon.unh.edu    
  News & More:
Hyperpolarized Gas MRI for Pulmonary Disease Assessment: Interview with Richard Hullihen, CEO of Polarean Imaging
Wednesday, 9 September 2020   by www.medgadget.com    
Pumpkin-shaped molecule enables 100-fold improved MRI contrast: new agent for detecting pathological cells
Tuesday, 13 October 2015   by phys.org    
MRI Mapping of Cerebrovascular Reactivity via Gas Inhalation Challenges
Wednesday, 17 December 2014   by www.jove.com    
Using MRI to study gas reactions
Thursday, 31 January 2008   by www.theengineer.co.uk    
New Technique Reveals Insights Into Lung Disease
Thursday, 13 December 2007   by www.sciencedaily.com    
MRI Resources 
Patient Information - Homepages - Implant and Prosthesis pool - Pediatric and Fetal MRI - MRI Centers - MR Guided Interventions
 
previous      16 - 20 (of 20)     
Result Pages : [1]  [2 3]  [4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]