Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Phase Encoding' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Phase Encoding' found in 7 terms [] and 67 definitions []
previous     41 - 45 (of 74)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15]
Searchterm 'Phase Encoding' was also found in the following service: 
spacer
Forum  (5)  
 
Double Contrast SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
This sequence type is a TSE counterpart to double echo sequences. To keep the echo train as short as possible, only echoes for PD and T2 weighted images, where the phase encoding gradient has a small amplitude, are measured separately. The echoes that determine resolution are used in both raw data matrices. This reduces the number of echoes required. Also the SAR drops and more slices can be acquired in the same repetition time.
spacer
 
Further Reading:
  Basics:
BASIC PRINCIPLES OF MR IMAGING
   by spinwarp.ucsd.edu    
MRI Resources 
Online Books - MRI Physics - Spectroscopy - Safety Training - IR - Implant and Prosthesis
 
Dual Echo Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(DESS) This sequence was originally known as FADE. It combines both the gradient echoes acquired in FISP and PSIF sequences in separate acquisition periods during a single interpulse interval. Phase encoding gradients are balanced to maintain the transverse steady state signals. The frequency encoding gradient is left on for the period of both the echoes, and is incompletely balanced to avoid dark banding artifacts otherwise associated with long TR fully balanced steady state sequences. The contrast of DESS is quite unique, true T2 or T1 contrast weighting is not possible. There is a strong fluid signal but fat is bright and other soft tissues appear similar to the short TR FISP image.
Used for, e.g. the joints, cartilage and the prostate.

See Steady State Free Precession and Dual Echo Sequence.
spacer

• View the DATABASE results for 'Dual Echo Steady State' (2).Open this link in a new window

MRI Resources 
Libraries - Health - - Raman Spectroscopy - Examinations - MRI Physics
 
Effective Echo Time
 
(TEeff) The contrast and the SNR of an MR image are determined primarily by the temporal position of the echo at which the phase encoding gradient has the smallest amplitude. The echo signal in this case undergoes minimal dephasing and has the strongest signal. The time period between the excitation pulse and this echo is the effective echo time.
spacer

• View the DATABASE results for 'Effective Echo Time' (2).Open this link in a new window

 
Further Reading:
  Basics:
RARE
Monday, 3 December 2012   by www2.warwick.ac.uk    
Clinical evaluation of a speed optimized T2 weighted fast spin echo sequence at 3.0 T using variable flip angle refocusing, half-Fourier acquisition and parallel imaging
Wednesday, 25 October 2006
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
Searchterm 'Phase Encoding' was also found in the following service: 
spacer
Forum  (5)  
 
Fast Spin EchoForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Fast Spin Echo Diagram (FSE) In the pulse sequence timing diagram, a fast spin echo sequence with an echo train length of 3 is illustrated. This sequence is characterized by a series of rapidly applied 180° rephasing pulses and multiple echoes, changing the phase encoding gradient for each echo.
The echo time TE may vary from echo to echo in the echo train. The echoes in the center of the K-space (in the case of linear k-space acquisition) mainly produce the type of image contrast, whereas the periphery of K-space determines the spatial resolution. For example, in the middle of K-space the late echoes of T2 weighted images are encoded. T1 or PD contrast is produced from the early echoes.
The benefit of this technique is that the scan duration with, e.g. a turbo spin echo turbo factor / echo train length of 9, is one ninth of the time. In T1 weighted and proton density weighted sequences, there is a limit to how large the ETL can be (e.g. a usual ETL for T1 weighted images is between 3 and 7). The use of large echo train lengths with short TE results in blurring and loss of contrast. For this reason, T2 weighted imaging profits most from this technique.
In T2 weighted FSE images, both water and fat are hyperintense. This is because the succession of 180° RF pulses reduces the spin spin interactions in fat and increases its T2 decay time. Fast spin echo (FSE) sequences have replaced conventional T2 weighted spin echo sequences for most clinical applications. Fast spin echo allows reduced acquisition times and enables T2 weighted breath hold imaging, e.g. for applications in the upper abdomen.
In case of the acquisition of 2 echoes this type of a sequence is named double fast spin echo / dual echo sequence, the first echo is usually density and the second echo is T2 weighted image. Fast spin echo images are more T2 weighted, which makes it difficult to obtain true proton density weighted images. For dual echo imaging with density weighting, the TR should be kept between 2000 - 2400 msec with a short ETL (e.g., 4).
Other terms for this technique are:
Turbo Spin Echo
Rapid Imaging Spin Echo,
Rapid Spin Echo,
Rapid Acquisition Spin Echo,
Rapid Acquisition with Refocused Echoes
 
Images, Movies, Sliders:
 Lumbar Spine T2 FSE Sagittal  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 MRI - Anatomic Imaging of the Foot  Open this link in a new window
    
SlidersSliders Overview

 Lumbar Spine T2 FSE Axial  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Fast Spin Echo' (31).Open this link in a new window

 
Further Reading:
  Basics:
MYELIN-SELECTIVE MRI: PULSE SEQUENCE DESIGN AND OPTIMIZATION
   by www.imaging.robarts.ca    
Advances in Magnetic Resonance Neuroimaging
Friday, 27 February 2009   by www.ncbi.nlm.nih.gov    
  News & More:
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries
Thursday, 23 April 2009   by www.eurekalert.org    
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
MRI Resources 
Distributors - Mobile MRI - Non-English - Pregnancy - MRI Technician and Technologist Jobs - Databases
 
Field of View
 
(FOV) Defined as the size of the two or three dimensional spatial encoding area of the image. Usually defined in units of mm². The FOV is the square image area that contains the object of interest to be measured. The smaller the FOV, the higher the resolution and the smaller the voxel size but the lower the measured signal. Useful for decreasing the scantime is a field of view different in the frequency and phase encoding directions (rectangular field of view - RFOV).
The magnetic field homogeneity decreases as more tissue is imaged (greater FOV). As a result the precessional frequencies change across the imaging volume. That can be a problem for fat suppression imaging. This fat is precessing at the expected frequency only in the center of the imaging volume. E.g. frequency specific fat saturation pulses become less effective when the field of view is increased. It is best to use smaller field of views when applying fat saturation pulses.
mri safety guidance
Image Guidance
Smaller FOV required higher gradient strength and concludes low signal. Therefore you have to find a compromise between these factors. The right choice of the field of view is important for MR image quality. When utilizing small field of views and scanning at a distance from the isocenter (more problems with artifacts) it is obviously important to ensure that the region of interest is within the scanning volume.
A smaller FOV in one direction is available with the function rectangular field of view (RFOV).

See also Field Inhomogeneity Artifact.
 
Images, Movies, Sliders:
 MRI - Anatomic Imaging of the Foot  Open this link in a new window
    
SlidersSliders Overview

 MRI - Anatomic Imaging of the Ankle 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Field of View' (27).Open this link in a new window

 
Further Reading:
  Basics:
Image Characteristics and Quality
   by www.sprawls.org    
  News & More:
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
Path Found to a Combined MRI and CT Scanner
Wednesday, 20 March 2013   by spectrum.ieee.org    
MRI Resources 
MR Myelography - Lung Imaging - Calculation - Contrast Enhanced MRI - DICOM - Intraoperative MRI
 
previous      41 - 45 (of 74)     next
Result Pages : [1 2]  [3 4 5 6 7 8 9 10 11 12 13 14 15]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]