Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Proton Density' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Proton Density' found in 2 terms [] and 19 definitions []
previous     11 - 15 (of 21)     next
Result Pages : [1]  [2 3 4 5]
Searchterm 'Proton Density' was also found in the following services: 
spacer
News  (2)  Forum  (8)  
 
Gradient Recalled Acquisition in Steady StateInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(GRASS) This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state. GRASS uses a RF pulse that alternates in sign. Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis. With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that GRASS exhibits vastly different contrast to FLASH type sequences.
spacer
 
• Related Searches:
    • Incoherent Gradient Echo (Gradient Spoiled)
    • Gradient Recalled Echo Sequence
    • Incoherent Gradient Echo (RF Spoiled)
    • Gradient Magnetic Field
    • Magnetization Prepared Rapid Gradient Echo
MRI Resources 
Nerve Stimulator - Most Wanted - Stent - Open Directory Project - MRA - MR Myelography
 
Imagent GIInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Perflubron® is a perfluorochemical for use as an oral contrast agent. Due to its insolubility in water it does not mix with intestinal secretions; thus bowel lumina appear homogeneously dark on MR images when Perflubron® replaces bowel contents. Filled bowel loops appear black with all pulse sequences because the contrast agent lacks mobile protons.
It is commercially available as Imagent GI. Because rapid transit through the gastrointestinal tract it reaches the rectum within 30 to 40 minutes in most patients. MR imaging of the upper abdominal region should begin within 15 minutes and of the pelvic region 15 to 60 minutes after ingestion of perflubron.

See also Classifications, Characteristics, etc.
Drug Information and Specification
NAME OF COMPOUND
Perfluoroctylbromide
DEVELOPER
CONTRAST EFFECT
Negative enhancement
Proton density reduction, signal void
PHARMACOKINETIC
Gastrointestinal
CONCENTRATION
Water immiscible liquid
DOSAGE
9 mL per kg of body weight
PREPARATION
Finished product
INDICATION
Bowel marking
DEVELOPMENT STAGE
For sale
DISTRIBUTOR
See below
PRESENTATION
Bottle of 200cc
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
TRADE NAME
DEVELOPMENT
STAGE
DISTRIBUTOR
USA
Imagent GI®
For sale
spacer

• View the DATABASE results for 'Imagent GI' (3).Open this link in a new window

 
Further Reading:
  News & More:
Slumping MRI market prompts Alliance to halt GI contrast agent effort
Wednesday, 28 September 1994   by www.searchmedica.com    
MRI Resources 
Safety Training - Functional MRI - Calculation - NMR - Pacemaker - Case Studies
 
Knee MRI
 
Knee MRI, with its high soft tissue contrast is one of the main imaging tools to depict knee joint pathology. MRI allows accurate imaging of intra-articular structures such as ligaments, cartilage, menisci, bone marrow, synovium, and adjacent soft tissue.
Knee exams require a dedicated extremity coil, providing a homogenous imaging volume and high SNR to ensure best signal coverage. A complete knee MR examination includes for example sagittal and coronal T1 weighted, and proton density weighted pulse sequences +/- fat saturation, or STIR sequences. For high spatial resolution, maximal 4 mm thick slices with at least an in plane resolution of 0.75 mm and small gap are recommended. To depict the anterior cruciate ligament clearly, the sagittal plane has to be rotated 10 - 20° externally (parallel to the medial border of the femoral condyle). Retropatellar cartilage can bee seen for example in axial T2 weighted gradient echo sequences with Fatsat. However, the choice of the pulse sequences is depended of the diagnostic question, the used scanner, and preference of the operator.
Diagnostic quality in knee imaging is possible with field strengths ranging from 0.2 to 3T. With low field strengths more signal averages must be measured, resulting in increased scan times to provide equivalent quality as high field strengths.
More diagnostic information of meniscal tears and chondral defects can be obtained by direct magnetic resonance arthrography, which is done by introducing a dilute solution of gadolinium in saline (1:1000) into the joint capsule. The knee is then scanned in all three planes using T1W sequences with fat suppression. For indirect arthrography, the contrast is given i.v. and similar scans are started 20 min. after injection and exercise of the knee.
Frequent indications of MRI scans in musculoskeletal knee diseases are:
e.g., meniscal degeneration and tears, ligament injuries, osteochondral fractures, osteochondritis dissecans, avascular bone necrosis and rheumatoid arthritis.

See also Imaging of the Extremities and STIR.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window
      

 Anatomic MRI of the Knee 2  Open this link in a new window
    
SlidersSliders Overview

 Knee MRI Coronal Pd Spir 001  Open this link in a new window
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 Axial Knee MRI Images T2 Weighted  Open this link in a new window
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Knee MRI' (4).Open this link in a new window


• View the NEWS results for 'Knee MRI' (4).Open this link in a new window.
 
Further Reading:
  Basics:
Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast
Sunday, 1 August 2004   by www.ajronline.org    
Knee, Anterior Cruciate Ligament Injuries (MRI)
Tuesday, 28 March 2006   by www.emedicine.com    
  News & More:
NSAIDs May Worsen Arthritis Inflammation
Monday, 21 November 2022   by www.itnonline.com    
A Knee MRI in Half the Time? It's Possible
Thursday, 8 April 2021   by www.diagnosticimaging.com    
Seniors, patients, astronauts will all benefit from new USask research on bone health
Saturday, 27 February 2021   by www.yorktonthisweek.com    
3D mapping algorithm reads knee MRIs for new arthritis treatments
Thursday, 11 June 2020   by www.healthimaging.com    
MRI T2 Mapping of the Knee Providing Synthetic Morphologic Images: Comparison to Conventional Turbo Spin-Echo MRI
Tuesday, 1 October 2019   by pubs.rsna.org    
Researcher uses MRI to measure joint's geometry and role in severe knee injury
Tuesday, 23 September 2014   by medicalxpress.com    
Abnormalities on MRI predict knee replacement
Monday, 9 March 2015   by medicalxpress.com    
Searchterm 'Proton Density' was also found in the following services: 
spacer
News  (2)  Forum  (8)  
 
Lung ImagingMRI Resource Directory:
 - Lung Imaging -
 
Lung imaging is furthermore a challenge in MRI because of the predominance of air within the lungs and associated susceptibility issues as well as low signal to noise of the inflated lung parenchyma. Cardiac and respiratory triggered or breath hold sequences allow diagnostic imaging, however a comparable image quality with computed tomography is still difficult to achieve.
Assumptions for lung MRI:
•
Low signal to noise ratio of the inherently low lung proton density.
•
Cardiac and respiratory motion artifacts.
•
Magnetic susceptibility effects of large magnetic field gradients.
•
Very short transverse relaxation times and significant diffusion yielding short T2 (30-70 msec), short T2* (1-3 msec), and additional long T1 relaxation times (1300-1500 msec).
•
The extreme short T2 values are responsible for a fast signal decay during a single shot readout, resulting in blurring.

The current trends in MRI are the use of new imaging technologies and increasingly powerful magnetic fields. Among these technologies are parallel imaging techniques as well as ventilation agents like hyperpolarized helium for the use as an inert inhalational contrast agent to study lung ventilation properties. With hyperpolarized gases clear images of the lungs can be obtained without using a large magnetic field (see also back projection imaging). Single shot sequences (e.g. TSE or Half Fourier Acquisition Single Shot Turbo Spin Echo HASTE) used in lung MR imaging benefits from parallel imaging techniques due to reduced relaxation time effects during the echo train and therefore reduced image blurring as well as reduced motion artifacts.
In the future, more effective contrast agents may provide an alternative solution to the need for high field MRI. Dynamic contrast enhanced MRI perfusion has demonstrated a potential in the diagnosis of pulmonary embolism or to characterize lung cancer and mediastinal tumors. 3D contrast enhanced magnetic resonance angiography of the thoracic vessel.

See also the related poll result: 'MRI will have replaced 50% of x-ray exams by'
 
Images, Movies, Sliders:
 Anatomic Imaging of the Lungs  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 MRI Thorax Basal Plane  Open this link in a new window
 
Radiology-tip.comradLung Scintigraphy
spacer

• View the DATABASE results for 'Lung Imaging' (7).Open this link in a new window


• View the NEWS results for 'Lung Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
A safer approach for diagnostic medical imaging
Monday, 29 September 2014   by www.eurekalert.org    
Parallel Lung Imaging(.pdf)
  News & More:
Chest MRI a viable alternative to chest CT in COVID-19 pneumonia follow-up
Monday, 21 September 2020   by www.healthimaging.com    
CT Imaging Features of 2019 Novel Corona virus (2019-nCoV)
Tuesday, 4 February 2020   by pubs.rsna.org    
Polarean Imaging Phase III Trial Results Point to Potential Improvements in Lung Imaging
Wednesday, 29 January 2020   by www.diagnosticimaging.com    
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
Chest MRI Using Multivane-XD, a Novel T2-Weighted Free Breathing MR Sequence
Thursday, 11 July 2019   by www.sciencedirect.co    
Researchers Review Importance of Non-Invasive Imaging in Diagnosis and Management of PAH
Wednesday, 11 March 2015   by lungdiseasenews.com    
New MRI Approach Reveals Bronchiectasis' Key Features Within the Lung
Thursday, 13 November 2014   by lungdiseasenews.com    
MRI techniques improve pulmonary embolism detection
Monday, 19 March 2012   by medicalxpress.com    
  News & More:
Partnership with VIDA to streamline adoption of advanced MRI of the lungs
Monday, 11 September 2023   by www.itnonline.com    
MRI Resources 
Manufacturers - Pediatric and Fetal MRI - Open Directory Project - Cardiovascular Imaging - MRI Technician and Technologist Schools - Directories
 
Magnetization Transfer
 
(MT) Magnetization Transfer was accidentally discovered by Wolff and Balaban in 1989. Conventional MRI is based on the differences in T1, T2 and the proton density (water content and the mobility of water molecules) in tissue; it relies primarily on free (bulk) water protons. The T2 relaxation times are greater than 10 ms and detectable. The T2 relaxation times of protons associated with macromolecules are less then 1 ms and not detectable in MRI.
Magnetization Transfer Imaging (MTI) is based on the magnetization interaction (through dipolar and/or chemical exchange) between bulk water protons and macromolecular protons. By applying an off resonance radio frequency pulse to the macromolecular protons, the saturation of these protons is then transferred to the bulk water protons. The result is a decrease in signal (the net magnetization of visible protons is reduced), depending on the magnitude of MT between tissue macromolecules and bulk water. With MTI, the presence or absence of macromolecules (e.g. in membranes, brain tissue) can be seen.
The magnetization transfer ratio (MTR) is the difference in signal intensity with or without MT.

See also Magnetization Transfer Contrast.
spacer

• View the DATABASE results for 'Magnetization Transfer' (7).Open this link in a new window

 
Further Reading:
  Basics:
MICRO-STRUCTURAL QUANTITIES - DIFFUSION, MAGNETISATION DECAY, MAGNETISATION TRANSFER AND PERMEABILITY(.pdf)
   by www.dundee.ac.uk    
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Gold-manganese nanoparticles for targeted diagnostic and imaging
Thursday, 12 November 2015   by www.nanowerk.com    
Magnetization Transfer Magnetic Resonance Imaging of Hepatic Tumors(.pdf)
   by www.nci.edu.eg    
MRI Resources 
Quality Advice - MRI Technician and Technologist Jobs - Blood Flow Imaging - Movies - Universities - Case Studies
 
previous      11 - 15 (of 21)     next
Result Pages : [1]  [2 3 4 5]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]