Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Rapid Imaging Spin Echo' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Rapid Imaging Spin Echo' found in 0 term [] and 1 definition [], (+ 7 Boolean[] results
1 - 5 (of 8)     next
Result Pages : [1]  [2]
Searchterm 'Rapid Imaging Spin Echo' was also found in the following service: 
spacer
News  (1)  
 
Fast Spin EchoForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Fast Spin Echo Diagram (FSE) In the pulse sequence timing diagram, a fast spin echo sequence with an echo train length of 3 is illustrated. This sequence is characterized by a series of rapidly applied 180° rephasing pulses and multiple echoes, changing the phase encoding gradient for each echo.
The echo time TE may vary from echo to echo in the echo train. The echoes in the center of the K-space (in the case of linear k-space acquisition) mainly produce the type of image contrast, whereas the periphery of K-space determines the spatial resolution. For example, in the middle of K-space the late echoes of T2 weighted images are encoded. T1 or PD contrast is produced from the early echoes.
The benefit of this technique is that the scan duration with, e.g. a turbo spin echo turbo factor / echo train length of 9, is one ninth of the time. In T1 weighted and proton density weighted sequences, there is a limit to how large the ETL can be (e.g. a usual ETL for T1 weighted images is between 3 and 7). The use of large echo train lengths with short TE results in blurring and loss of contrast. For this reason, T2 weighted imaging profits most from this technique.
In T2 weighted FSE images, both water and fat are hyperintense. This is because the succession of 180° RF pulses reduces the spin spin interactions in fat and increases its T2 decay time. Fast spin echo (FSE) sequences have replaced conventional T2 weighted spin echo sequences for most clinical applications. Fast spin echo allows reduced acquisition times and enables T2 weighted breath hold imaging, e.g. for applications in the upper abdomen.
In case of the acquisition of 2 echoes this type of a sequence is named double fast spin echo / dual echo sequence, the first echo is usually density and the second echo is T2 weighted image. Fast spin echo images are more T2 weighted, which makes it difficult to obtain true proton density weighted images. For dual echo imaging with density weighting, the TR should be kept between 2000 - 2400 msec with a short ETL (e.g., 4).
Other terms for this technique are:
Turbo Spin Echo
Rapid Imaging Spin Echo,
Rapid Spin Echo,
Rapid Acquisition Spin Echo,
Rapid Acquisition with Refocused Echoes
 
Images, Movies, Sliders:
 Lumbar Spine T2 FSE Sagittal  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 MRI - Anatomic Imaging of the Foot  Open this link in a new window
    
SlidersSliders Overview

 Lumbar Spine T2 FSE Axial  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
 
• Share the entry 'Fast Spin Echo':  Facebook  Twitter  LinkedIn  
 
• Related Searches:
    • Pulse Sequence
    • Scan Time
    • Lumbar Spine MRI
    • Pulse Sequence Timing Diagram
    • Magnetic Resonance Imaging MRI
 
Further Reading:
  Basics:
MYELIN-SELECTIVE MRI: PULSE SEQUENCE DESIGN AND OPTIMIZATION
   by www.imaging.robarts.ca    
Advances in Magnetic Resonance Neuroimaging
Friday, 27 February 2009   by www.ncbi.nlm.nih.gov    
  News & More:
New MR sequence helps radiologists more accurately evaluate abnormalities of the uterus and ovaries
Thursday, 23 April 2009   by www.eurekalert.org    
Spin echoes, CPMG and T2 relaxation - Introductory NMR & MRI from Magritek
2013   by www.azom.com    
MRI Resources 
Anatomy - Databases - Hospitals - Developers - MRA - Mobile MRI Rental
 
Echelon™ 1.5TInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.
 
www.hitachimed.com/contentindex.asp?ID=971 From Hitachi Medical Systems America Inc.;
Hitachi expanded its portfolio with the Echelon™ 1.5T. The MRI scanner combines a compact magnet and a scalable 8-channel RF system with high-performance gradients and slew rate to select short echo times, small field of views, high matrices and thin slices. Standard features of the Echelon MRI system include higher-order active shim, RAPID (parallel imaging for use on brain MRI, body, cardiovascular imaging, and orthopedic coils), multiple coil ports, and an advanced reconstruction engine.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Short bore
Head, body coil, spine, breast, knee, shoulder, vascular multiple array coils.
SYNCHRONIZATION
Cardiac gating, ECG/peripheral, respiratory gating
PULSE SEQUENCES
SE, IR, FSE, FIR, GE, SG, BASG, PBSG, PCIR, DWI, Radial, Angiography: TOF, FLUTE (Fluoro-triggered bolus MRA), Time-resolved MRA
IMAGING MODES
Single, multislice, volume study
PIXEL INTENSITY
Level Range: -2,000 to +4,000
Sub millimeter
POWER REQUIREMENTS
208/220/240 V, single phase
CRYOGEN USE
Low cryogen boil-off
STRENGTH
30 mT/m
150 T/m/sec
Higher-order active shim
spacer

• View the DATABASE results for 'Echelon™ 1.5T' (2).Open this link in a new window


• View the NEWS results for 'Echelon™ 1.5T' (3).Open this link in a new window.
 
Further Reading:
  Basics:
Echelon 1.5T
   by www.hitachimed.com    
MRI Resources 
MR Guided Interventions - Education pool - Jobs pool - Raman Spectroscopy - Spectroscopy pool - Cochlear Implant
 
Perfusion ImagingForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(PWI - Perfusion Weighted Imaging) Perfusion MRI techniques (e.g. PRESTO - Principles of Echo Shifting using a Train of Observations) are sensitive to microscopic levels of blood flow. Contrast enhanced relative cerebral blood volume (rCBV) is the most used perfusion imaging. Both, the ready availability and the T2* susceptibility effects of gadolinium, rather than the T1 shortening effects make gadolinium a suitable agent for use in perfusion imaging. Susceptibility here refers to the loss of MR signal, most marked on T2* (gradient echo)-weighted and T2 (spin echo)-weighted sequences, caused by the magnetic field-distorting effects of paramagnetic substances.
T2* perfusion uses dynamic sequences based on multi or single shot techniques. The T2* (T2) MRI signal drop within or across a brain region is caused by spin dephasing during the rapid passage of contrast agent through the capillary bed. The signal decrease is used to compute the relative perfusion to that region. The bolus through the tissue is only a few seconds, high temporal resolution imaging is required to obtain sequential images during the wash in and wash out of the contrast material and therefore, resolve the first pass of the tracer. Due to the high temporal resolution, processing and calculation of hemodynamic maps are available (including mean transit time (MTT), time to peak (TTP), time of arrival (T0), negative integral (N1) and index.
An important neuroradiological indication for MRI is the evaluation of incipient or acute stroke via perfusion and diffusion imaging. Diffusion imaging can demonstrate the central effect of a stroke on the brain, whereas perfusion imaging visualizes the larger 'second ring' delineating blood flow and blood volume. Qualitative and in some instances quantitative (e.g. quantitative imaging of perfusion using a single subtraction) maps of regional organ perfusion can thus be obtained.
Echo planar and potentially echo volume techniques together with appropriate computing power offer real time images of dynamic variations in water characteristics reflecting perfusion, diffusion, oxygenation (see also Oxygen Mapping) and flow.
Another type of perfusion MR imaging allows the evaluation of myocardial ischemia during pharmacologic stress. After e.g., adenosine infusion, multiple short axis views (see cardiac axes) of the heart are obtained during the administration of gadolinium contrast. Ischemic areas show up as areas of delayed and diminished enhancement. The MRI stress perfusion has been shown to be more accurate than nuclear SPECT exams. Myocardial late enhancement and stress perfusion imaging can also be performed during the same cardiac MRI examination.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Left Circumflex Ischemia First-pass Contrast Enhancement  Open this link in a new window
 
Radiology-tip.comradPerfusion Scintigraphy
spacer
Medical-Ultrasound-Imaging.comBolus Injection
spacer

• View the DATABASE results for 'Perfusion Imaging' (16).Open this link in a new window


• View the NEWS results for 'Perfusion Imaging' (3).Open this link in a new window.
 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
  News & More:
Non-invasive diagnostic procedures for suspected CHD: Search reveals informative evidence
Wednesday, 8 July 2020   by medicalxpress.co    
Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen
Wednesday, 29 February 2012   by www.plosone.org    
Motion-compensation of Cardiac Perfusion MRI using a Statistical Texture Ensemble(.pdf)
June 2003   by www.imm.dtu.dk    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
1999   by www.stanford.edu    
Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast
Searchterm 'Rapid Imaging Spin Echo' was also found in the following service: 
spacer
News  (1)  
 
Steady State Free PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence in which a non-zero steady state develops for both components of magnetization (transverse and longitudinal) and also a condition where the TR is shorter than the T1 and T2 times of the tissue. If the RF pulses are close enough together, the MR signal will never completely decay, implying that the spins in the transverse plane never completely dephase. The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, then the flip angle for steady state should be 45-60°.
Steady state free precession is also a method of MR excitation in which strings of RF pulses are applied rapidly and repeatedly with interpulse intervals short compared to both T1 and T2. Alternating the phases of the RF pulses by 180° can be useful. The signal reforms as an echo immediately before each RF pulse; immediately after the RF pulse there is additional signal from the FID produced by the pulse.
The strength of the FID will depend on the time between pulses (TR), the tissue and the flip angle of the pulse; the strength of the echo will additionally depend on the T2 of the tissue. With the use of appropriate dephasing gradients, the signal can be observed as a frequency-encoded gradient echo either shortly before the RF pulse or after it; the signal immediately before the RF pulse will be more highly T2 weighted. The signal immediately after the RF pulse (in a rapid series of RF pulses) will depend on T2 as well as T1, unless measures are taken to destroy signal refocusing and prevent the development of steady state free precession.
To avoid setting up a state of SSFP when using rapidly repeated excitation RF pulses, it may be necessary to spoil the phase coherence between excitations, e.g. with varying phase shifts or timing of the exciting RF pulses or varying spoiler gradient pulses between the excitations.
Steady state free precession imaging methods are quite sensitive to the resonant frequency of the material. Fluctuating equilibrium MR (see also FIESTA and DRIVE)and linear combination SSFP actually use this sensitivity for fat suppression. Fat saturated SSFP (FS-SSFP) use a more complex fat suppression scheme than FEMR or LCSSFP, but has a 40% lower scan time.
A new family of steady state free precession sequences use a balanced gradient, a gradient waveform, which will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied.
This sequences include, e.g. Balanced Fast Field Echo - bFFE, Balanced Turbo Field Echo - bTFE, Fast Imaging with Steady Precession - TrueFISP and Balanced SARGE - BASG.

See also FIESTA.
spacer

• View the DATABASE results for 'Steady State Free Precession' (20).Open this link in a new window

 
Further Reading:
  News & More:
Comparison of New Methods for Magnetic Resonance Imaging of Articular Cartilage(.pdf)
2002
MRI Resources 
Patient Information - Crystallography - Musculoskeletal and Joint MRI - Case Studies - Shoulder MRI - Used and Refurbished MRI Equipment
 
Diffusion Weighted SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Diffusion Weighted Imaging -
 
Diffusion weighted imaging can be performed similar to the phase contrast angiography sequence. The gradients must be increased in amplitude to depict the much slower motions of molecular diffusion in the body.
While a T1 weighted MRI pulse sequence is diffusion sensitive, a quantitative diffusion pulse sequence was introduced by Steijskal and Tanner. Its characteristic features are two strong symmetrical gradient lobes placed on either side of the 180° refocusing pulse in a spin echo sequence. These symmetrical gradient lobes have the sole purpose of enhancing dephasing of spins, thereby accelerating intravoxel incoherent motion (IVIM) signal loss.
Dephasing is proportional to the square of the time (diffusion time) during which the gradients are switched on and the strength of the applied gradient field. Therefore, the use of high field gradient systems with faster and more sensitive sequences, make diffusion weighting more feasible.
Areas in which the protons diffuse rapidly (swollen cells in early stroke, less restriction to diffusion) will show an increased signal when the echo is measured relative to areas in which diffusion is restricted. For increased accuracy of diffusion measurement and image enhancement, useful motion correction techniques such as navigator echo and other methods should be used. In addition to this, applying the b-value calculated by the strength and duration of motion probing gradients with a high rate of accuracy is very important.

See also Apparent Diffusion Coefficient, ADC Map, Lattice Index Map.
spacer

• View the DATABASE results for 'Diffusion Weighted Sequence' (6).Open this link in a new window

 
Further Reading:
  Basics:
Diffusion-Weighted Imaging
   by spinwarp.ucsd.edu    
A Comparison of Methods for High-Spatial-Resolution Diffusion-weighted Imaging in Breast MRI
Tuesday, 25 August 2020   by pubs.rsna.org    
Diffusion Imaging: From Basic Physics to Practical Imaging
1999   by ej.rsna.org    
  News & More:
DWI-MRI helps breast cancer patients' chemotherapy response
Friday, 20 January 2023   by www.auntminnieeurope.com    
Effect of gadolinium-based contrast agent on breast diffusion-tensor imaging
Thursday, 6 August 2020   by www.eurekalert.org    
Hopkins researchers use diffusion MRI technique to monitor ultrasound uterine fibroid treatment
Monday, 8 August 2005   by www.eurekalert.org    
Diffusion-weighted MRI sensitive for metastasis in pelvic lymph nodes
Sunday, 15 June 2014   by www.2minutemedicine.com    
EVALUATION OF HUMAN STROKE BY MR IMAGING
2000
MRI Resources 
Implant and Prosthesis - Libraries - Safety Training - Claustrophobia - Developers - Pathology
 
     1 - 5 (of 8)     next
Result Pages : [1]  [2]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]