Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Region Of Interest' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Region Of Interest' found in 1 term [] and 11 definitions [], (+ 1 Boolean[] results
previous     6 - 10 (of 13)     next
Result Pages : [1]  [2 3]
Searchterm 'Region Of Interest' was also found in the following services: 
spacer
News  (1)  Resources  (1)  
 
Multiple Coil ArrayInfoSheet: - Coils - 
Intro, 
Overview, 
etc.
 
RF coils, usually in receive mode, arranged to cover the whole region of interest. It has both the spatial coverage of a large region-of-interest coil and the high SNR of a surface coil.
spacer
 
Further Reading:
  Basics:
System Architecture
2003   by www.revisemri.com    
Searchterm 'Region Of Interest' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (4) Open this link in a new window
Phase Contrast SequenceMRI Resource Directory:
 - Sequences -
 
(PC) Phase contrast sequences are the basis of MRA techniques utilizing the change in the phase shifts of the flowing protons in the region of interest to create an image. Spins that are moving along the direction of a magnetic field gradient receive a phase shift proportional to their velocity.
In a phase contrast sequence two data sets with a different amount of flow sensitivity are acquired. This is usually accomplished by applying gradient pairs, which sequentially dephase and then rephase spins during the sequence. Both 2D and 3D acquisition techniques can be applied with phase contrast MRA.
The first data set is acquired with a flow compensated sequence, i. e. without flow sensitivity. The second data set is acquired with a flow sensitive sequence. The amount of flow sensitivity is controlled by the strength of the bipolar gradient pulse pair, which is incorporated into the sequence. Stationary tissue undergoes no effective phase change after the application of the two gradients. Caused by the different spatial localization of flowing blood to stationary tissue, it experiences a different size of the second bipolar gradient compared to the first. The result is a phase shift.
The raw data from the two data sets are subtracted. By comparing the phase of signals from each location in the two sequences the exact amount of motion induced phase change can be determined to have a map where pixel brightness is proportional to spatial velocity.
Phase contrast images represent the signal intensity of the velocity of spins at each point within the field of view. Regions that are stationary remain black while moving regions are represented as grey to white.
The phase shift is proportional to the spin's velocity, and this allows the quantitative assessment of flow velocities. The difference MRI signal has a maximum value for opposite directions. This velocity is typically referred to as venc, and depends on the pulse amplitude and distance between the gradient pulse pair. For velocities larger than venc the difference signal is decreased constantly until it gets zero. Therefore, in a phase contrast angiography it is important to correctly set the venc of the sequence to the maximum flow velocity which is expected during the measurement. High venc factors of the PC angiogram (more than 40 cm/sec) will selectively image the arteries (PCA - arteriography), whereas a venc factor of 20 cm/sec will perform the veins and sinuses (PCV or MRV - venography).

See also Flow Quantification, Contrast Enhanced MR Venography, Time of Flight Angiography, Time Resolved Imaging of Contrast Kinetics.
 
Images, Movies, Sliders:
 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Phase Contrast Sequence' (5).Open this link in a new window

 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
MRI Resources 
Distributors - Claustrophobia - Shoulder MRI - Movies - Spectroscopy pool - Colonography
 
Slice Overlap ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Slice overlap
DESCRIPTION
Loss of signal
REASON
HELP
Overlapping prevention
The slice overlap artifact is another name for crosstalk artifact. If slices of multislice acquisitions are overlapping, the spinning nuclei belonging to more than one slice getting multiple times saturated, which leads to signal loss in this areas.
mri safety guidance
Image Guidance
This problem occurs often in cervical or lumbar spine MRI, when scanning each disc with multi angle oblique technique. If prevention of overlapping is not possible, try to position the saturated region posterior to the spinal canal, outside the region of interest.

See also Crosstalk (Crosstalk), and Multiple Slice Imaging.
spacer
 
Further Reading:
  Basics:
Slice-overlap Artifacts
   by www.mritutor.org    
Searchterm 'Region Of Interest' was also found in the following services: 
spacer
News  (1)  Resources  (1)  
 
Spatially Localized Spectroscopy
 
Process by which regions of tissue are selectively sampled to produce spectra from defined volumes in space. These methods may be employed to sample a single region in space (single voxel method) or multiple regions simultaneously (multivoxel methods). The spatial selectivity can be achieved by a variety of methods including surface coils, surface coils in conjunction with RF gradient methods, or RF pulses in combination with switched magnetic field gradients, for example, volume-selective excitation. An indirect method of achieving spatial selectivity is the destruction of coherence of the magnetization in regions that lie outside the region of interest. A variety of spatial encoding schemes have been employed for multivoxel localization. See Chemical shift imaging.
spacer
Searchterm 'Region Of Interest' was also found in the following services: 
spacer
Radiology  (3) Open this link in a new windowUltrasound  (4) Open this link in a new window
Spine MRIMRI Resource Directory:
 - Spine MRI -
 
Magnetic resonance imaging (MRI) of the spine is a noninvasive procedure to evaluate different types of tissue, including the spinal cord, vertebral disks and spaces between the vertebrae through which the nerves travel, as well as distinguish healthy tissue from diseased tissue.
The cervical, thoracic and lumbar spine MRI should be scanned in individual sections. The scan protocol parameter like e.g. the field of view (FOV), slice thickness and matrix are usually different for cervical, thoracic and lumbar spine MRI, but the method is similar. The standard views in the basic spinal MRI scan to create detailed slices (cross sections) are sagittal T1 weighted and T2 weighted images over the whole body part, and transverse (e.g. multi angle oblique) over the region of interest with different pulse sequences according to the result of the sagittal slices. Additional views or different types of pulse sequences like fat suppression, fluid attenuation inversion recovery (FLAIR) or diffusion weighted imaging are created dependent on the indication.

Indications:
•
Neurological deficit, evidence of radiculopathy, cauda equina compression
•
Primary tumors or drop metastases
•
Infection/inflammatory disease, multiple sclerosis
•
Postoperative evaluation of lumbar spine: disk vs. scar
•
Evaluation of syrinx
•
Localized back pain with no radiculopathy (leg pain)

Contrast enhanced MRI techniques delineate infections vs. malignancies, show a syrinx cavity and support to differentiate the postoperative conditions. After surgery for disk disease, significant fibrosis can occur in the spine. This scarring can mimic residual disk herniation. Magnetic resonance myelography evaluates spinal stenosis and various intervertebral discs can be imaged with multi angle oblique techniques. Cine series can be used to show true range of motion studies of parts of the spine. Advanced open MRI devices are developed to perform positional scans in the position of pain or symptom (e.g. Upright™ MRI formerly Stand-Up MRI).
 
Images, Movies, Sliders:
 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Spine MRI' (11).Open this link in a new window


• View the NEWS results for 'Spine MRI' (4).Open this link in a new window.
 
Further Reading:
  Basics:
Newer Sequences for Spinal MR Imaging: Smorgasbord or Succotash of Acronyms?
   by www.ajnr.org    
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
Landmark Independent Study by UCLA School of Medicine Reports Comparison of Dynamic™ Upright® MRI With Static Upright MRI in More Than 1,000 Patients (1,302):
Thursday, 15 November 2007   by www.fonar.com    
  News & More:
Recommendations for MRI Assessment in Managing Axial Spondyloarthritis
Wednesday, 8 January 2020   by www.rheumatologyadvisor.com    
MRI Of The Spine Identifies Smoldering Myeloma Patients At High Risk Of Progressing To Multiple Myeloma
Tuesday, 26 August 2014   by www.myelomabeacon.com    
Intensive training of young tennis players causes spinal damage
Wednesday, 18 July 2007   by www.eurekalert.org    
MRI Resources 
Cochlear Implant - Supplies - MRI Technician and Technologist Jobs - IR - MR Guided Interventions - Brain MRI
 
previous      6 - 10 (of 13)     next
Result Pages : [1]  [2 3]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]