Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Second' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Second' found in 1 term [] and 82 definitions []
previous     51 - 55 (of 83)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
Searchterm 'Second' was also found in the following services: 
spacer
News  (51)  Resources  (6)  Forum  (16)  
 
Mutual Induction
 
Producing electricity in a secondary coil or wire by passing an AC current through a nearby primary coil.
spacer
Searchterm 'Second' was also found in the following services: 
spacer
Radiology  (26) Open this link in a new windowUltrasound  (49) Open this link in a new window
Nyquist GhostInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.
 
Phase differences in every second line produce striped ghosts with a shift of half the field of view, so-called Nyquist ghosts.
spacer

• View the DATABASE results for 'Nyquist Ghost' (2).Open this link in a new window

MRI Resources 
Spine MRI - Pregnancy - DICOM - Research Labs - Software - MRI Technician and Technologist Jobs
 
Orientation
 
If available, some graphic aids can be helpful to show image orientations.
1) A graphic icon of the labeled primary axes (A, L, H) with relative lengths given by direction sines and orientation as if viewed from the normal to the image plane can help orient the viewer, both to identify image plane orientation and to indicate possible in plane rotation.
2) Ingraphic prescription of obliques from other images, a sample original image with an overlaid line or set of lines indicating the intersection of the original and oblique image planes can help orient the viewer.
•
The 3 basic orthogonal slice orientations are:
transversal (T), sagittal (S) and coronal (C).
•
The basic anatomical directions are:
right(R) to left (L), posterior (P) to anterior (A), and feet (F) to head (H).
•
A standard display orientation for images in the basic slice orientation is:
1) transverse: A to top of image and L to right,
2) coronal: H to top of image and L to right and
3) sagittal: H to top of image and A to left.

The location in the R/L and P/A directions can be specified relative to the axis of the magnet.
The F/H location can be specified relative to a convenient patient structure.
The orientation of single oblique slices can be specified by rotating a slice in one of the basic orientations toward one of the other two basic orthogonal planes about an axis defined by the intersection of the 2 planes.
Double oblique slices can be specified as the result of tipping a single oblique plane toward the remaining basic orientation plane, about an axis defined by the intersection of the oblique plane and the remaining basic plane. In double oblique angulations, the first rotation is chosen about the vertical image axis and the second about the (new) horizontal axis.
Angles are chosen to have magnitudes less than 90° (for single oblique slices less than 45°); the sign of the angle is taken to be positive when the rotation brings positive axes closer together.
 
Images, Movies, Sliders:
 Brain MRI Sagittal T1 001  Open this link in a new window
    
 Brain MRI Coronal FLAIR 001  Open this link in a new window
    
 Brain MRI Transversal T2 001  Open this link in a new window
 MRI - Anatomic Imaging of the Ankle 2  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Orientation' (16).Open this link in a new window

Searchterm 'Second' was also found in the following services: 
spacer
News  (51)  Resources  (6)  Forum  (16)  
 
Panorama 0.23T™InfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, 
etc.MRI Resource Directory:
 - Devices -
 
www.medical.philips.com/main/products/mri/products/panoramafamily/panorama0.23t_rt/features/ From Philips Medical Systems;
the Panorama 0.23 T, providing a new design optimized for patient comfort, faster reconstruction time than before (300 images/second) and new gradient specifications. Philips' Panorama 0.23 T I/T supports MR-guided interventions, resulting in minimally invasive procedures, more targeted surgery, reduced recovery time and shorter hospital stays. Optional OptoGuide functionality enables real-time needle tracking. Philips' Panorama 0.23 TPanorama 0.2 R/T is the first and only open MRI system to enable radiation therapy planning using MR data sets. The Panorama also features the new and consistent Philips User Interface, an essential element of the Vequion clinical IT family of products and services.
Device Information and Specification
CLINICAL APPLICATION
Whole body
CONFIGURATION
Open MRI/C-arm
Head, head-neck, extremity M-L, neck, body/spine S-XL, shoulder, bilateral breast, wrist, TMJ, flex XS-S-M-L-XL-XXL
SYNCHRONIZATION
ECG/peripheral: Optional/optional, respiratory gating
PULSE SEQUENCES
SE, FE, IR, FFE, DEFFE, DESE, TSE, DETSE, Single shot SE, DRIVE, Balanced FFE, MRCP, Fluid Attenuated Inversion Recovery, Turbo FLAIR, IR-TSE, T1-STIR TSE, T2-STIR TSE, Diffusion Imaging, 3D SE, 3D FFE, MTC;; Angiography: CE-ANGIO, MRA 2D, 3D TOF
IMAGING MODES
Single, multislice, volume study, dynamic, SIMEX, multi chunk 3D, multiple stacks
TR
Min. 6.2 msec
TE
Min. 2.8 msec
SINGLE/MULTI SLICE
50 slices/sec
0.4 cm - 40 cm
1280 X 1024
MEASURING MATRIX
Up to 512 x 512
PIXEL INTENSITY
256 gray scale
MAGNET TYPE
Resistive/iron core
Open x 46 cm x infinite (side-first patient entry)
MAGNET WEIGHT
13110 kg
H*W*D
196 x 121 x 176 cm
POWER REQUIREMENTS
400/480 V
COOLING SYSTEM TYPE
Closed loop chilled water (chiller included)
N/A
STRENGTH
19 mT/m
5-GAUSS FRINGE FIELD
2.4 m / 3.7 m
Passive/active
spacer

• View the DATABASE results for 'Panorama 0.23T™' (2).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
Searchterm 'Second' was also found in the following services: 
spacer
Radiology  (26) Open this link in a new windowUltrasound  (49) Open this link in a new window
Phase Encoding Gradient
 
(Gφ) The phase encoding gradient is a magnetic field gradient that allows the encoding of the spatial signal location along a second dimension by different spin phases. The phase encoding gradient is applied after slice selection and excitation (before the frequency encoding gradient), orthogonally to the other two gradients. The spatial resolution is directly related to the number of phase encoding steps (gradients).
spacer

• View the DATABASE results for 'Phase Encoding Gradient' (18).Open this link in a new window

 
Further Reading:
  Basics:
RARE
Monday, 3 December 2012   by www2.warwick.ac.uk    
  News & More:
Principles of Magnetic Resonance Imaging
Friday, 21 December 2001   by www.mikepuddephat.com    
MRI Resources 
Quality Advice - Intraoperative MRI - Contrast Enhanced MRI - Process Analysis - Stimulator pool - Image Quality
 
previous      51 - 55 (of 83)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]