Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Signa' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Signa' found in 23 terms [] and 358 definitions []
previous     41 - 45 (of 381)     next
Result Pages : [1 2 3 4 5]  [6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'Signa' was also found in the following services: 
spacer
News  (60)  Resources  (16)  Forum  (78)  
 
Contrast Enhanced Gradient Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Contrast enhanced GRE sequences provide T2 contrast but have a relatively poor SNR. Repetitive RF pulses with small flip angles together with appropriate gradient profiles lead to the superposition of two resonance signals.
The first signal is due to the free induction decay FID observed after the first and all ensuing RF excitations.
The second is a resonance signal obtained as a result of a spin echo generated by the second and all addicted RF-pulses.
Hence it is absent after the first excitation, it is a result of the free induction decay of the second to last RF-excitation and has a TE, which is almost 2TR. For this echo to occur the gradients have to be completely symmetrical relative to the half time between two RF-pulses, a condition that makes it difficult to integrate this pulse sequence into a multiple slice imaging technique. The second signal not only contains echo contributions from free induction decay, but obviously weakened by T2-decay. Since the echo is generated by a RF-pulse, it is truly T2 rather than T2* weighted. Correspondingly it is also less sensitive to susceptibility changes and field inhomogeneities.
Companies use different acronyms to describe certain techniques.
Different terms (see also acronyms) for these gradient echo pulse sequences:
CE-FAST Contrast Enhanced Fourier Acquired Steady State,
CE-FFE Contrast Enhanced Fast Field Echo,
CE-GRE Contrast Enhanced Gradient-Echo,
DE-FGR Driven Equilibrium FGR,
FADE FASE Acquisition Double Echo,
PSIF Reverse Fast Imaging with Steady State Precession,
SSFP Steady State Free Precession,
T2 FFE Contrast Enhanced Fast Field Echo (T2 weighted).

In this context, 'contrast enhanced' refers to the pulse sequence, it does not mean enhancement with a contrast agent.
spacer
MRI Resources 
Raman Spectroscopy - Breast MRI - Service and Support - Mobile MRI - Developers - Process Analysis
 
Convolution
 
Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in digital signal processing. This operation is mostly used together with Fourier transformations for MRI signal / image processing.
spacer

• View the DATABASE results for 'Convolution' (2).Open this link in a new window

 
Further Reading:
  Basics:
Convolution
   by www.wam.umd.edu    
Fourier Transforms and 2-D Image Processing
   by robotics.eecs.berkeley.edu    
The Scientist and Engineer's Guide to Digital Signal Processing
  News & More:
New Compressed Sensing Technique to Accelerate MRI Acquisition Process
Tuesday, 9 October 2012   by www.azosensors.com    
MRI Resources 
Spine MRI - MRI Physics - Liver Imaging - Veterinary MRI - Implant and Prosthesis pool - Breast MRI
 
Digitization Noise ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Digitization noise, digitizer quantization, low dynamic range
DESCRIPTION
Noise
REASON
Finite voltage resolution of the digitizer
HELP
Larger range of sensitivity
Noise introduced into digitized signals by the finite voltage resolution of the digitizer.
You can see the effects of quantization if the noise level is smaller than the digitizer quantum. If the signal dynamic range is too great, the highest intensities from overloading the digitizer may result in the weaker features being lost in the digitization noise.
mri safety guidance
Image Guidance
This can be resolved by using an analog to digital converter with a larger range of sensitivity or by using techniques to reduce the dynamic range, e.g. suppressing the signal from water in order to detect the signal from less abundant compounds.
spacer

• View the DATABASE results for 'Digitization Noise Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
Searchterm 'Signa' was also found in the following services: 
spacer
News  (60)  Resources  (16)  Forum  (78)  
 
Double Inversion Recovery T1 MeasurementInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(DIR or DIRT1) Double inversion recovery T1 measurement is a T1 weighted black blood MRA sequence in which the signal from blood is suppressed. The inversion time to suppress blood is described as the duration between the initial inversion pulse and time point that the longitudinal magnetization of blood reaches the zero point. The readout starts at the blood suppression inversion time (BSP TI) and blood in the imaging slice gives no signal. This inversion time is around 650 ms with a 60 beat per minute heart rate at 1.5 T.
The TI can be decreased by using a wider receive bandwidth, shorter echo train length and/or narrow trigger window. Wide bandwidth also decreases the blurring caused by long echo trains at the expense of signal to noise ratio. In case of in plane or slow flow the suppression of the signal from blood may be incomplete. With increased TE or change of the image plane the blood suppression can be improved.
Double inversion recovery is a breath hold technique with one image per acquisition used in cardiovascular imaging. The patient is instructed to hold the breath in expiration (if not possible also inspiration can be taken), so that the end diastolic volume in the cardiac chambers would be the same during entire scanning. DIR provides fine details of the boundary between the lumen and the wall of the cardiac chambers and main vascular and heart structures, pericardium, and mediastinal tissues.
 
Images, Movies, Sliders:
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Double Inversion Recovery T1 Measurement' (2).Open this link in a new window

 
Further Reading:
  News & More:
Artificial double inversion recovery images can substitute conventionally acquired images: an MRI-histology study
Wednesday, 16 February 2022   by www.nature.com    
MRI Resources 
Sequences - MRA - DICOM - Pathology - MR Myelography - PACS
 
Dynamic Range
 
The range of signal intensities that may need to be distinguished in an image or spectrum or that can be distinguished by the electronic components. If the signal dynamic range is too great, the need to keep the highest intensities from overloading the digitizer may result in the weaker features being lost in the digitization noise. This can be dealt with by using an analog to digital converter with a larger range of sensitivity or by using techniques to reduce the dynamic range, e.g. suppressing the signal from water in order to detect the signal from less abundant compounds.
spacer

• View the DATABASE results for 'Dynamic Range' (7).Open this link in a new window

MRI Resources 
Cochlear Implant - Health - Raman Spectroscopy - Directories - Open Directory Project - Non-English
 
previous      41 - 45 (of 381)     next
Result Pages : [1 2 3 4 5]  [6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]