| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | 'Specific Absorption Rate' | |
Result : Searchterm 'Specific Absorption Rate' found in 1 term [] and 7 definitions [], (+ 1 Boolean[] results
| previous 6 - 9 (of 9) Result Pages : [1] [2] | | | | Searchterm 'Specific Absorption Rate' was also found in the following services: | | | | |
| | |
| |
|
It is important to remember when working around a superconducting magnet that the magnetic field is always on. Under usual working conditions the field is never turned off. Attention must be paid to keep all ferromagnetic items at an adequate distance from the magnet. Ferromagnetic objects which came accidentally under the influence of these strong magnets can injure or kill individuals in or nearby the magnet, or can seriously damage every hardware, the magnet itself, the cooling system, etc..
See MRI resources Accidents.
The doors leading to a magnet room should be closed at all times except when entering or exiting the room. Every person working in or entering the magnet room or adjacent rooms with a magnetic field has to be instructed about the dangers. This should include the patient, intensive-care staff, and maintenance-, service- and cleaning personnel, etc..
The 5 Gauss limit defines the 'safe' level of static magnetic field exposure. The value of the absorbed dose is fixed by the authorities to avoid heating of the patient's tissue and is defined by the specific absorption rate.
Leads or wires that are used in the magnet bore during imaging procedures, should not form large-radius wire loops. Leg-to-leg and leg-to-arm skin contact should be prevented in order to avoid the risk of burning due to the generation of high current loops if the legs or arms are allowed to touch. The patient's skin should not be in contact with the inner bore of the magnet.
The outflow from cryogens like liquid helium is improbable during normal operation and not a real danger for patients.
The safety of MRI contrast agents is tested in drug trials and they have a high compatibility with very few side effects. The variations of the side effects and possible contraindications are similar to X-ray contrast medium, but very rare. In general, an adverse reaction increases with the quantity of the MRI contrast medium and also with the osmolarity of the compound.
See also 5 Gauss Fringe Field, 5 Gauss Line, Cardiac Risks, Cardiac Stent, dB/dt, Legal Requirements, Low Field MRI, Magnetohydrodynamic Effect, MR Compatibility, MR Guided Interventions, Claustrophobia, MRI Risks and Shielding. | | | | | | | | | • For this and other aspects of MRI safety see our InfoSheet about MRI Safety. | | | • Patient-related information is collected in our MRI Patient Information.
| | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | MRI Safety Resources | | | | |
| | | |
| |
|
Image Guidance
The higher the frequency, the larger will be the amount of heat developed. The more ionic the biochemical environment in the tissue, the more energy that will be deposited as heat.
This effect is well known for homogeneous model systems, but the complex structure of various human tissues makes detailed theoretical calculations very difficult, if not impossible.
By scanning problems, it is important to verify the transmission frequency. If the RF transmitted into the patient was, e.g. 5000 Hz lower than the resonance frequency of the protons, no protons was excited, and no signal returns. | | | | • View the DATABASE results for 'Radio Frequency' (72).
| | | • View the NEWS results for 'Radio Frequency' (2).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | | | | | Searchterm 'Specific Absorption Rate' was also found in the following services: | | | | |
| | |
| |
|
| | | | • View the DATABASE results for 'Magnetic Resonance' (127).
| | | • View the NEWS results for 'Magnetic Resonance' (259).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | | |
|
| |
| Look Ups |
| |