Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Spin Echo Multi Slice' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Spin Echo Multi Slice' found in 1 term [] and 0 definition [], (+ 16 Boolean[] results
previous     11 - 15 (of 17)     next
Result Pages : [1]  [2 3 4]
MRI Resources 
Jobs pool - Portals - Pathology - Journals - Blood Flow Imaging - Distributors
 
Time of Flight AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.

See also Magnetic Resonance Angiography and Contrast Enhanced Magnetic Resonance Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Coronary Angiogram
spacer
Medical-Ultrasound-Imaging.comColor Power Angio,  Doppler Ultrasound
spacer
 
• Related Searches:
    • Multiple Overlapping Thin Slab (Slice) Acquisition
    • Out of Phase
    • Variable Flip Angle
    • Saturation
    • Circle of Willis
 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
Universities - Implant and Prosthesis pool - Shielding - MRI Technician and Technologist Jobs - Mass Spectrometry - Liver Imaging
 
Contrast Enhanced Gradient Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Contrast enhanced GRE sequences provide T2 contrast but have a relatively poor SNR. Repetitive RF pulses with small flip angles together with appropriate gradient profiles lead to the superposition of two resonance signals.
The first signal is due to the free induction decay FID observed after the first and all ensuing RF excitations.
The second is a resonance signal obtained as a result of a spin echo generated by the second and all addicted RF-pulses.
Hence it is absent after the first excitation, it is a result of the free induction decay of the second to last RF-excitation and has a TE, which is almost 2TR. For this echo to occur the gradients have to be completely symmetrical relative to the half time between two RF-pulses, a condition that makes it difficult to integrate this pulse sequence into a multiple slice imaging technique. The second signal not only contains echo contributions from free induction decay, but obviously weakened by T2-decay. Since the echo is generated by a RF-pulse, it is truly T2 rather than T2* weighted. Correspondingly it is also less sensitive to susceptibility changes and field inhomogeneities.
Companies use different acronyms to describe certain techniques.
Different terms (see also acronyms) for these gradient echo pulse sequences:
CE-FAST Contrast Enhanced Fourier Acquired Steady State,
CE-FFE Contrast Enhanced Fast Field Echo,
CE-GRE Contrast Enhanced Gradient-Echo,
DE-FGR Driven Equilibrium FGR,
FADE FASE Acquisition Double Echo,
PSIF Reverse Fast Imaging with Steady State Precession,
SSFP Steady State Free Precession,
T2 FFE Contrast Enhanced Fast Field Echo (T2 weighted).

In this context, 'contrast enhanced' refers to the pulse sequence, it does not mean enhancement with a contrast agent.
spacer

• View the DATABASE results for 'Contrast Enhanced Gradient Echo Sequence' (4).Open this link in a new window

MRI Resources 
Stent - Collections - Pediatric and Fetal MRI - Guidance - Mobile MRI Rental - Spine MRI
 
Echo Spacing
 
Echo spacing is the distance in time between the echoes in multiple echo sequences like, e.g. echo planar imaging, fast spin echo. A short echo space produces compact sequence timing and less image artifacts. The shorter the rise time, the faster the gradients and therefore the echo spacing. Gradients with a shorter echo spacing will have a better resolution and more slices per TR.

See also Fast Spin Echo.
spacer

• View the DATABASE results for 'Echo Spacing' (6).Open this link in a new window

 
Further Reading:
  Basics:
Fast Spin Echo(.pdf)
Tuesday, 24 January 2006   by www.81bones.net    
MRI Resources 
MRI Technician and Technologist Career - Jobs pool - Knee MRI - Liver Imaging - Homepages - Examinations
 
Liver ImagingForum -
related threadsMRI Resource Directory:
 - Liver Imaging -
 
Liver imaging can be performed with sonography, computed tomography (CT) and magnetic resonance imaging (MRI). Ultrasound is, caused by the easy access, still the first-line imaging method of choice; CT and MRI are applied whenever ultrasound imaging yields vague results. Indications are the characterization of metastases and primary liver tumors e.g., benign lesions such as focal nodular hyperplasia (FNH), adenoma, hemangioma and malignant lesions (cancer) such as hepatocellular carcinomas (HCC). The decision, which medical imaging modality is more suitable, MRI or CT, is dependent on the different factors. CT is less costly and more widely available; modern multislice scanners provide high spatial resolution and short scan times but has the disadvantage of radiation exposure.
With the introduction of high performance MR systems and advanced sequences the image quality of MRI for the liver has gained substantially. Fast spin echo or single shot techniques, often combined with fat suppression, are the most common T2 weighted sequences used in liver MRI procedures. Spoiled gradient echo sequences are used as ideal T1 weighted sequences for evaluating of the liver. The repetition time (TR) can be sufficiently long to acquire enough sections covering the entire liver in one pass, and to provide good signal to noise. The TE should be the shortest in phase echo time (TE), which provides strong T1 weighting, minimizes magnetic susceptibility effects, and permits acquisition within one breath hold to cover the whole liver. A flip angle of 80° provides good T1 weighting and less of power deposition and tissue saturation than a larger flip angle that would provide comparable T1 weighting.
Liver MRI is very dependent on the administration of contrast agents, especially when detection and characterization of focal lesions are the issues. Liver MRI combined with MRCP is useful to evaluate patients with hepatic and biliary disease.
Gadolinium chelates are typical non-specific extracellular agents diffusing rapidly to the extravascular space of tissues being cleared by glomerular filtration at the kidney. These characteristics are somewhat problematic when a large organ with a huge interstitial space like the liver is imaged. These agents provide a small temporal imaging window (seconds), after which they begin to diffuse to the interstitial space not only of healthy liver cells but also of lesions, reducing the contrast gradient necessary for easy lesion detection. Dynamic MRI with multiple phases after i.v. contrast media (Gd chelates), with arterial, portal and late phase images (similar to CT) provides additional information.
An additional advantage of MRI is the availability of liver-specific contrast agents (see also Hepatobiliary Contrast Agents). Gd-EOB-DTPA (gadoxetate disodium, Gadolinium ethoxybenzyl dimeglumine, EOVIST Injection, brand name in other countries is Primovist) is a gadolinium-based MRI contrast agent approved by the FDA for the detection and characterization of known or suspected focal liver lesions.
Gd-EOB-DTPA provides dynamic phases after intravenous injection, similarly to non-specific gadolinium chelates, and distributes into the hepatocytes and bile ducts during the hepatobiliary phase. It has up to 50% hepatobiliary excretion in the normal liver.
Since ferumoxides are not eliminated by the kidney, they possess long plasmatic half-lives, allowing circulation for several minutes in the vascular space. The uptake process is dependent on the total size of the particle being quicker for larger particles with a size of the range of 150 nm (called superparamagnetic iron oxide). The smaller ones, possessing a total particle size in the order of 30 nm, are called ultrasmall superparamagnetic iron oxide particles and they suffer a slower uptake by RES cells. Intracellular contrast agents used in liver MRI are primarily targeted to the normal liver parenchyma and not to pathological cells. Currently, iron oxide based MRI contrast agents are not marketed.
Beyond contrast enhanced MRI, the detection of fatty liver disease and iron overload has clinical significance due to the potential for evolution into cirrhosis and hepatocellular carcinoma. Imaging-based liver fat quantification (see also Dixon) provides noninvasively information about fat metabolism; chemical shift imaging or T2*-weighted imaging allow the quantification of hepatic iron concentration.

See also Abdominal Imaging, Primovistâ„¢, Liver Acquisition with Volume Acquisition (LAVA), T1W High Resolution Isotropic Volume Examination (THRIVE) and Bolus Injection.

For Ultrasound Imaging (USI) see Liver Sonography at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 Anatomic Imaging of the Liver  Open this link in a new window
      

 MRI Liver T2 TSE  Open this link in a new window
    
 
Radiology-tip.comradAbdomen CT,  Biliary Contrast Agents
spacer
Medical-Ultrasound-Imaging.comLiver Sonography,  Vascular Ultrasound Contrast Agents
spacer

• View the DATABASE results for 'Liver Imaging' (13).Open this link in a new window


• View the NEWS results for 'Liver Imaging' (10).Open this link in a new window.
 
Further Reading:
  Basics:
Comparison of liver scintigraphy and the liver-spleen contrast in Gd-EOB-DTPA-enhanced MRI on liver function tests
Thursday, 18 November 2021   by www.nature.com    
Liver Imaging Today
Friday, 1 February 2013   by www.healthcare.siemens.it    
Elastography: A Useful Method in Depicting Liver Hardness
Thursday, 15 April 2010   by www.sciencedaily.com    
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
  News & More:
Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease
Saturday, 20 January 2024   by www.nature.com    
Even early forms of liver disease affect heart health, Cedars-Sinai study finds
Thursday, 8 December 2022   by www.eurekalert.org    
For monitoring purposes, AI-aided MRI does what liver biopsy does with less risk, lower cost
Wednesday, 28 September 2022   by radiologybusiness.com    
Perspectum: High Liver Fat (Hepatic Steatosis) Linked to Increased Risk of Hospitalization in COVID-19 Patients With Obesity
Monday, 29 March 2021   by www.businesswire.com    
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
Friday, 16 October 2015   by www.ncbi.nlm.nih.gov    
EORTC study aims to qualify ADC as predictive imaging biomarker in preoperative regimens
Monday, 4 January 2016   by www.eurekalert.org    
MRI effectively measures hemochromatosis iron burden
Saturday, 3 October 2015   by medicalxpress.com    
Total body iron balance: Liver MRI better than biopsy
Sunday, 15 March 2015   by www.eurekalert.org    
MRI Resources 
Blood Flow Imaging - MRI Technician and Technologist Schools - Resources - Databases - Corporations - Shielding
 
Flow ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
DESCRIPTION
Vascular ghosts (ghosting artifact), anomalous intensities in images
REASON
Movement of body fluids
HELP
Flow compensation, presaturation, triggering
Flow effects in MRI produce a range of artifacts, e.g. intravascular signal void by time of flight effects; turbulent dephasing and first echo dephasing, caused by flowing blood.
Through movement of the hydrogen nuclei (e.g. blood flow), there is a location change between the time these nuclei experience a radio frequency pulse and the time the emitted signal is received (because the repetition time is asynchronous with the pulsatile flow).
The blood flow occasionally produces intravascular high signal intensities due to flow related enhancement, even echo rephasing and diastolic pseudogating. The pulsatile laminar flow within vessels often produces a complex multilayered band that usually propagates outside the head in the phase encoded direction. Blood flow artifacts should be considered as a special subgroup of motion artifacts.
mri safety guidance
Image Guidance
Artifacts can be reduced by reduction of phase shifts with flow compensation (gradient moment nulling), suppression of the blood signal with saturation pulses parallel to the slices, synchronization of the imaging sequence with the heart cycle (cardiac triggering) or can be flipped 90° by swapping the phase//frequency encoding directions.

See also Flow Related Enhancement and Flow Effects.
 
Images, Movies, Sliders:
 Knee MRI Sagittal T1 003  Open this link in a new window
 
spacer

• View the DATABASE results for 'Flow Artifact' (6).Open this link in a new window

 
Further Reading:
  News & More:
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Advanced Visualization Techniques Could Change the Paradigm for Diagnosis and Treatment of Heart Disease
Thursday, 31 May 2012   by www.sciencedaily.com    
MRI Resources 
Quality Advice - Crystallography - Patient Information - Sequences - Image Quality - Fluorescence
 
previous      11 - 15 (of 17)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Next big thing in MRI will be :
AI 
remote operator 
personalized protocols 
helium-free 
molecular MRI 
portable MRI 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]