Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'T2 Weighted Image' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'T2 Weighted Image' found in 1 term [] and 19 definitions []
previous     11 - 15 (of 20)     next
Result Pages : [1]  [2 3 4]
Searchterm 'T2 Weighted Image' was also found in the following services: 
spacer
News  (4)  Resources  (1)  
 
FerumoxideInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
Short name: AMI-25, generic name: Ferumoxide (SPIO)
Ferumoxides are superparamagnetic (T2*) MRI contrast agents, so the largest signal change is on T2 and T2* weighted images.
The agent distributes relatively rapidly to organs with reticuloendothelial cells primarily the liver, spleen and bone marrow. The liver shows decreased signal intensity, as does the spleen and marrow. The agent is taken up by the normal liver, resulting in increased CNR between tumor and normal liver. Hepatocellular lesions, such as adenoma or focal nodular hyperplasia, contain reticuloendothelial cells, so they will behave similar to the liver, with decreased signal on T2 weighted images. On T1 images, there is typically some circulating contrast agent, and blood vessels show increased signal intensity.
Current MRI protocols involve T1 weighted breath-hold gradient echo images of the liver, and fast spin echo T2 weighted pictures. This requires about 15 minutes. The patient is then removed from the scanner, and the contrast agent administered. After contrast administration, the same pulse sequences are again repeated.
spacer
 
• Related Searches:
    • Liver Imaging
    • Contrast Agents
    • Very Small Superparamagnetic Iron Oxide Particles
    • Superparamagnetic Iron Oxide
    • Intracellular Contrast Agents
 
Further Reading:
  Basics:
Comparison of Two Superparamagnetic Viral-Sized Iron Oxide Particles Ferumoxides and Ferumoxtran-10 with a Gadolinium Chelate in Imaging Intracranial Tumors
2002   by www.ajnr.org    
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
MRI Resources 
Pathology - MRI Technician and Technologist Schools - IR - Journals - Anatomy - Abdominal Imaging
 
Hepatobiliary Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
The characteristics of a hepatobiliary contrast agent are specific liver uptake and excretion via the biliary system. The paramagnetic substance (e.g. manganese, gadolinium) is taken up by normal hepatocytes. Diseased liver tissue did not include hepatocytes or their function is disturbed. Therefore, the signal of healthy liver tissue increases on T1 weighted sequences, but not in the liver lesions.
Another type of liver imaging contrast agent is superparamagnetic iron oxide. These particles accumulate in the reticuloendothelial system (RES) of the liver, and darken the healthy liver tissue in T2 weighted images. RES cells (including Kupffer cells) are existing in healthy liver tissue, in altered tissue with reduced RES activity or without RES cells the contrast agent concentration is also low or not existing, which improves the liver to lesion contrast.
Benefits of hepatobiliary contrast agents:
•
Liver lesions (e.g., tumor, metastases, haemangioma etc.) are better detectable and to characterize.
•
These contrast agents are useful to analyze and evaluate the liver function (in cases of diffuse liver diseases e.g., cirrhosis).
•
Imaging of the gallbladder and biliary system is improved.

Differences of a hepatobiliary contrast agent compared with a targeted contrast agent for Kupffer cells:
•
The higher number of hepatocytes than Kupffer cells improves the uptake effectiveness of the contrast agent.
•
Hepatobiliary contrast agents enable a better opacification of the biliary ducts and the gallbladder caused by the biliary excretion.
•
Hepatobiliary contrast media are fast excreted agents. RES targeted contrast agents remain longer in the body, a fact that can increase possible side effects.

See also Superparamagnetic Contrast Agents, Hepatobiliary Chelates, Liver Imaging, Endoremâ„¢, Primovistâ„¢, and Classifications, Characteristics, etc.

See also the related poll result: 'The development of contrast agents in MRI is'
spacer

• View the DATABASE results for 'Hepatobiliary Contrast Agents' (11).Open this link in a new window

 
Further Reading:
  Basics:
Contrast MRI Best at Finding Liver Trouble - But Timing Matters
Sunday, 6 March 2011   by www.searchmedica.com    
  News & More:
Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease
Friday, 1 June 2012   by www.ncbi.nlm.nih.gov    
EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans
Friday, 21 July 2017   by www.ema.europa.eu    
MAGNETIC RESONANCE IMAGING OF FOCAL LIVER LESIONS(.pdf)
2002
MRI Resources 
MRI Technician and Technologist Jobs - Service and Support - Equipment - Resources - MRI Technician and Technologist Schools - Homepages
 
Lumbar Spine MRI
 
MRI of the lumbar spine, with its multiplanar 3 dimensional imaging capability, is currently the preferred modality for establishing a diagnosis. MRI scans and magnetic resonance myelography have many advantages compared with computed tomography and/or X-ray myelography in evaluating the lumbar spine. MR imaging scans large areas of the spine without ionizing radiation, is noninvasive, not affected by bone artifacts, provides vascular imaging capability, and makes use of safer contrast agents (gadolinium chelate).
Due to the high level of tissue contrast resolution, nerves and discs are clearly visible. MRI is excellent for detecting degenerative disease in the spine. Lumbar spine MRI accurately shows disc disease (prolapsed disc or slipped disc), the level at which disc disease occurs, and if a disc is compressing spinal nerves. Lumbar spine MRI depicts soft tissues, including the cauda equina, spinal cord, ligaments, epidural fat, subarachnoid space, and intervertebral discs. Loss of epidural fat on T1 weighted images, loss of cerebrospinal fluid signal around the dural sac on T2 weighted images and degenerative disc disease are common features of lumbar stenosis.

Common indications for MRI of the lumbar spine:
Neurologic deficits, evidence of radiculopathy, acute spinal cord compression (e.g., sudden bowel/bladder disturbance)
Suspected systemic disorders (primary tumors, drop metastases, osteomyelitis)
Postoperative evaluation of lumbar spine: disk vs. scar
Localized back pain with no radiculopathy (leg pain)

Lumbar spine imaging requires a special spine coil. often used whole spine array coils have the advantage that patients do not need other positioning if also upper parts of the spine should be scanned. Sagittal T1 and T2 weighted FSE sequences are the standard views. With multi angle oblique techniques individually oriented transverse images of each intervertebral disc at different angles can be obtained.

See also the related poll result: 'MRI will have replaced 50% of x-ray exams by'
 
Images, Movies, Sliders:
 Anatomic Imaging of the Lumbar Spine  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Lumbar Spine MRI' (6).Open this link in a new window

 
Further Reading:
  Basics:
Lumbar Spine Stenosis: A Common Cause of Back and Leg Pain
   by www.aafp.org    
Spine imaging after lumbar disc replacement: pitfalls and current recommendations
Tuesday, 21 July 2009   by 7thspace.com    
  News & More:
Impact of patient-reported symptom information on lumbar spine MRI Interpretation
Monday, 25 January 2021   by www.eurekalert.org    
Lumbar spine MRI reports are too difficult for patients to understand
Friday, 29 March 2019   by www.eurekalert.org    
Inappropriate Ordering of Lumbar Spine Magnetic Resonance Imaging: Are Providers Choosing Wisely? -
Tuesday, 2 February 2016   by www.ajmc.com    
How Weight-Bearing MRIs Can Improve Care & Lower Costs While Meeting Milliman Criteria
Friday, 4 October 2013   by www.beckersspine.com    
Lumbar Diskal Cyst Containing Intervertebral Disk Materials
Tuesday, 1 November 2011   by www.orthosupersite.com    
A Study of the Morphology of Lumbar Discs in Sitting and Standing Positions Using a 0.5T Open- Configuration MRI(.pdf)
2001   by cds.ismrm.org    
Searchterm 'T2 Weighted Image' was also found in the following services: 
spacer
News  (4)  Resources  (1)  
 
Magnetic Resonance CholangiopancreaticographyMRI Resource Directory:
 - MRCP -
 
(MRCP) This MR imaging technique takes advantage of the high signal intensity of body fluids and acquires heavy T2 weighted images of the gall bladder, the pancreas and parts of the liver. Due to the T2 weighting, the liver and other solid parenchyma are signal suppressed and only fluid-filled structures in addition to the gall bladder, the bile and pancreatic ducts retain important signal intensity. Hepatobiliary contrast agents (e.g. Gadoxetic Acid, CMC 001) can be useful for enhancement of the bile ducts and better imaging of the biliary tract.
A 2D cholangiogram, often only one thick slice (a volume with a thickness of 4 - 8 cm, mostly coronal planned) or 5 - 6 radial placed slices, shows a view like single slices. If a 3D acquisition is used, the postprocessing function maximum intensity projection (MIP) can show reconstructions from multiple sides.
Radiology-tip.comradBiliary Contrast Agents
spacer
Medical-Ultrasound-Imaging.comGallbladder Ultrasound
spacer

• View the DATABASE results for 'Magnetic Resonance Cholangiopancreaticography' (3).Open this link in a new window

 
Further Reading:
  News & More:
Perspectum and Nuance Collaborate to Scale Access to AI-Enabled Integrated Digital Care Platforms to Improve Patient Care for Metabolic Disease
Friday, 9 December 2022   by www.itnonline.com    
MRI Resources 
IR - Breast Implant - Process Analysis - Fluorescence - Nerve Stimulator - MRI Technician and Technologist Schools
 
Magnetization Transfer Contrast
 
(MTC) This MRI method increases the contrast by removing a portion of the total signal in tissue. An off resonance radio frequency (RF) pulse saturates macromolecular protons to make them invisible (caused by their ultra-short T2* relaxation times). The MRI signal from semi-solid tissue like brain parenchyma is reduced, and the signal from a more fluid component like blood is retained.
E.g., saturation of broad spectral lines may produce decreases in intensity of lines not directly saturated, through exchange of magnetization between the corresponding states; more closely coupled states will show a greater resulting intensity change. Magnetization transfer techniques make demyelinated brain or spine lesions (as seen e.g. in multiple sclerosis) better visible on T2 weighted images as well as on gadolinium contrast enhanced T1 weighted images.
Off resonance makes use of a selection gradient during an off resonance MTC pulse. The gradient has a negative offset frequency on the arterial side of the imaging volume (caudally more off resonant and cranially less off resonant). The net effect of this type of pulse is that the arterial blood outside the imaging volume will retain more of its longitudinal magnetization, with more vascular signal when it enters the imaging volume. Off resonance MTC saturates the venous blood, leaving the arterial blood untouched.
On resonance has no effect on the free water pool but will saturate the bound water pool and is the difference in T2 between the pools. Special binomial pulses are transmitted causing the magnetization of the free protons to remain unchanged. The z-magnetization returns to its original value. The spins of the bound pool with a short T2 experience decay, resulting in a destroyed magnetization after the on resonance pulse.

See also Magnetization Transfer.
spacer

• View the DATABASE results for 'Magnetization Transfer Contrast' (5).Open this link in a new window

 
Further Reading:
  News & More:
MRI of the Human Eye Using Magnetization Transfer Contrast Enhancement
   by www.iovs.org    
MRI Resources 
MRI Reimbursement - Services and Supplies - Artifacts - General - Open Directory Project - Online Books
 
previous      11 - 15 (of 20)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]