Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Time Of Flight' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Time Of Flight' found in 2 terms [] and 16 definitions []
previous     6 - 10 (of 18)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Time Of Flight' was also found in the following services: 
spacer
News  (2)  Forum  (1)  
 
Contrast Enhanced Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(CE MRA) Contrast enhanced MR angiography is based on the T1 values of blood, the surrounding tissue, and paramagnetic contrast agent.
T1-shortening contrast agents reduces the T1 value of the blood (approximately to 50 msec, shorter than that of the surrounding tissues) and allow the visualization of blood vessels, as the images are no longer dependent primarily on the inflow effect of the blood. Contrast enhanced MRA is performed with a short TR to have low signal (due to the longer T1) from the stationary tissue, short scan time to facilitate breath hold imaging, short TE to minimize T2* effects and a bolus injection of a sufficient dose of a gadolinium chelate.
Images of the region of interest are performed with 3D spoiled gradient echo pulse sequences. The enhancement is maximized by timing the contrast agent injection such that the period of maximum arterial concentration corresponds to the k-space acquisition. Different techniques are used to ensure optimal contrast of the arteries e.g., bolus timing, automatic bolus detection, bolus tracking, care bolus. A high resolution with near isotropic voxels and minimal pulsatility and misregistration artifacts should be striven for. The postprocessing with the maximum intensity projection (MIP) enables different views of the 3D data set.
Unlike conventional MRA techniques based on velocity dependent inflow or phase shift techniques, contrast enhanced MRA exploits the gadolinium induced T1-shortening effects. CE MRA reduces or eliminates most of the artifacts of time of flight angiography or phase contrast angiography. Advantages are the possibility of in plane imaging of the blood vessels, which allows to examine large parts in a short time and high resolution scans in one breath hold. CE MRA has found a wide acceptance in the clinical routine, caused by the advantages:
3D MRA can be acquired in any plane, which means that greater vessel coverage can be obtained at high resolution with fewer slices (aorta, peripheral vessels);
the possibility to perform a time resolved examination (similarly to conventional angiography);
no use of ionizing radiation; paramagnetic agents have a beneficial safety.
 
Images, Movies, Sliders:
 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Magnetic Resonance Angiography MRA
    • Cardiovascular Imaging
    • MRI Scan
    • Contrast Enhanced MRI
    • Angiography
 
Further Reading:
  Basics:
Contrast-Enhanced MR Angiography(.pdf)
   by ric.uthscsa.edu    
CONTRAST ENHANCED MR ANGIOGRAPHY – PRINCIPLES, APPLICATIONS, TIPS AND PITFALLS(.pdf)
  News & More:
CONTRAST-ENHANCED MRA OF THE CAROTIDS(.pdf)
PERIPHERAL VASCULAR MAGNETIC RESONANCE ANGIOGRAPHY(.pdf)
CONTRAST ENHANCED MRI OF THE LIVER STATE-OF-THE-ART(.pdf)
MRI Resources 
Pediatric and Fetal MRI - Libraries - Safety pool - Open Directory Project - MRI Accidents - Used and Refurbished MRI Equipment
 
Entry Slice Phenomenon (Artifact)InfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Entry slice phenomenon
DESCRIPTION
Bright signals in blood vessels at the first slice
REASON
Unsaturated spins
The entry slice phenomenon arise in MRI when blood with unsaturated spins flows in the observed slice(s). These spins will emit a strong signal, because of their unsaturated status (flow related enhancement). The number of slices affected depends on the flow velocity and the slice thickness; the direction of flow determines which slices are affected. Time of Flight MRA is based on this entry slice phenomenon.

See also Flow Compensation, Flow Related Enhancement, Artifact Overview and Artifacts Reduction Index.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer
 
Further Reading:
  News & More:
Troubleshooting the ACR MRI Accreditation Phantom Tests
   by www.aapm.org    
MRI Resources 
Coils - Pathology - Stent - - Raman Spectroscopy - Open Directory Project
 
FlowForum -
related threads
 
Flow phenomena are intrinsic processes in the human body. Organs like the heart, the brain or the kidneys need large amounts of blood and the blood flow varies depending on their degree of activity. Magnetic resonance imaging has a high sensitivity to flow and offers accurate, reproducible, and noninvasive methods for the quantification of flow. MRI flow measurements yield information of blood supply of of various vessels and tissues as well as cerebro spinal fluid movement.
Flow can be measured and visualized with different pulse sequences (e.g. phase contrast sequence, cine sequence, time of flight angiography) or contrast enhanced MRI methods (e.g. perfusion imaging, arterial spin labeling).
The blood volume per time (flow) is measured in: cm3/s or ml/min. The blood flow-velocity decreases gradually dependent on the vessel diameter, from approximately 50 cm per second in arteries with a diameter of around 6 mm like the carotids, to 0.3 cm per second in the small arterioles.

Different flow types in human body:
Behaves like stationary tissue, the signal intensity depends on T1, T2 and PD = Stagnant flow
Flow with consistent velocities across a vessel = Laminar flow
Laminar flow passes through a stricture or stenosis (in the center fast flow, near the walls the flow spirals) = Vortex flow
Flow at different velocities that fluctuates = Turbulent flow

See also Flow Effects, Flow Artifact, Flow Quantification, Flow Related Enhancement, Flow Encoding, Flow Void, Cerebro Spinal Fluid Pulsation Artifact, Cardiovascular Imaging and Cardiac MRI.
 
Images, Movies, Sliders:
 MVP Parasternal  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Flow' (113).Open this link in a new window


• View the NEWS results for 'Flow' (7).Open this link in a new window.
 
Further Reading:
  News & More:
The super-fast MRI scan that could revolutionise heart failure diagnosis
Wednesday, 21 September 2022   by www.eurekalert.org    
Searchterm 'Time Of Flight' was also found in the following services: 
spacer
News  (2)  Forum  (1)  
 
Flow ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
DESCRIPTION
Vascular ghosts (ghosting artifact), anomalous intensities in images
REASON
Movement of body fluids
HELP
Flow compensation, presaturation, triggering
Flow effects in MRI produce a range of artifacts, e.g. intravascular signal void by time of flight effects; turbulent dephasing and first echo dephasing, caused by flowing blood.
Through movement of the hydrogen nuclei (e.g. blood flow), there is a location change between the time these nuclei experience a radio frequency pulse and the time the emitted signal is received (because the repetition time is asynchronous with the pulsatile flow).
The blood flow occasionally produces intravascular high signal intensities due to flow related enhancement, even echo rephasing and diastolic pseudogating. The pulsatile laminar flow within vessels often produces a complex multilayered band that usually propagates outside the head in the phase encoded direction. Blood flow artifacts should be considered as a special subgroup of motion artifacts.
mri safety guidance
Image Guidance
Artifacts can be reduced by reduction of phase shifts with flow compensation (gradient moment nulling), suppression of the blood signal with saturation pulses parallel to the slices, synchronization of the imaging sequence with the heart cycle (cardiac triggering) or can be flipped 90° by swapping the phase//frequency encoding directions.

See also Flow Related Enhancement and Flow Effects.
 
Images, Movies, Sliders:
 Knee MRI Sagittal T1 003  Open this link in a new window
 
spacer

• View the DATABASE results for 'Flow Artifact' (6).Open this link in a new window

 
Further Reading:
  News & More:
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Advanced Visualization Techniques Could Change the Paradigm for Diagnosis and Treatment of Heart Disease
Thursday, 31 May 2012   by www.sciencedaily.com    
MRI Resources 
Absorption and Emission - Nerve Stimulator - Spine MRI - Examinations - Mobile MRI Rental - Services and Supplies
 
Flow Effects
 
Motion of material being imaged, particularly flowing blood, can result in many possible effects in the images.
Fast moving blood produces flow voids, blood flowing in to the outer slices of an imaging volume produces high signals (flow related enhancement, entry slice phenomenon), pulsatile flow creates ghost images of the vessel extending across the image in the phase encoding direction (image misregistration).
Flow-related dephasing occurring when spin isochromats are moving with different velocities in an external gradient field G so that they acquire different phases. When these phases vary by more then 180° within a voxel, substantial spin dephasing results leading to considerable intravascular signal loss.
These effects can be understood as caused by time of flight effects (washout or washin due to motion of nuclei between two consecutive spatially selective RF excitations, repeated in times on the order of, or shorter than the relaxation times of blood) or phase shifts (delay between phase encoding and frequency encoding) that can be acquired by excited spins moving along magnetic field gradients.
The inconsistency of the signal resulting from pulsatile flow can lead to artifacts in the image. The flow effects can also be exploited for MR angiography or flow measurements.

See also Flow Artifact.
 
Images, Movies, Sliders:
 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Neck  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the DATABASE results for 'Flow Effects' (16).Open this link in a new window

 
Further Reading:
  News & More:
Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device
Thursday, 31 December 2009   by 7thspace.com    
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
MRI Resources 
Safety Training - Shoulder MRI - MRI Training Courses - MRI Technician and Technologist Career - Stent - Colonography
 
previous      6 - 10 (of 18)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]