Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'View' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'View' found in 5 terms [] and 99 definitions []
previous     46 - 50 (of 104)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'View' was also found in the following services: 
spacer
News  (56)  Resources  (52)  Forum  (50)  
 
Fat SuppressionForum -
related threads
 
Fat suppression is the process of utilizing specific MRI parameters to remove the deleterious effects of fat from the resulting images , e.g. with STIR, FAT SAT sequences, water selective (PROSET WATS - water only selection, also FATS - fat only selection possible) excitation techniques, or pulse sequences based on the Dixon method.
Spin magnetization can be modulated by using special RF pulses. CHESS or its variations like SPIR, SPAIR (Spectral Selection Attenuated Inversion Recovery) and FAT SAT use frequency selective excitation pulses, which produce fat saturation.
Fat suppression techniques are nearly used in all body parts and belong to every standard MRI protocol of joints like knee, shoulder, hips, etc.
mri safety guidance
Image Guidance
Imaging of, e.g. the foot can induce bad fat suppression with SPIR/FAT SAT due to the asymmetric volume of this body part. The volume of the foot alters the magnetic field to a different degree than the smaller volume of the lower leg affecting the protons there. There is only a small band of tissue where the fat protons are precessing at the frequency expected, resulting in frequency selective fat saturation working only in that area. This can be corrected by volume shimming or creating a more symmetrical volume being imaged with water bags.
Even with their longer scan time and motion sensitivity, STIR (short T1/tau inversion recovery) sequences are often the better choice to suppress fat. STIR images are also preferred because of the decreased sensitivity to field inhomogeneities, permitting larger fields of views when compared to fat suppressed images and the ability to image away from the isocenter.
See also Knee MRI.
Sequences based on Dixon turbo spin echo (fast spin echo) can deliver a significant better fat suppression than conventional TSE/FSE imaging.
 
Images, Movies, Sliders:
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 MRI Orbita T2 FatSat  Open this link in a new window
    
 Knee MRI Sagittal STIR 001  Open this link in a new window
 MRI - Anatomic Imaging of the Ankle 3  Open this link in a new window
    
SlidersSliders Overview

 
spacer
 
• Related Searches:
    • Out of Phase
    • Knee MRI
    • Water Fat Shift
    • Shoulder MRI
    • Short T1 Inversion Recovery
 
Further Reading:
  Basics:
Techniques of Fat Suppression(.pdf)
   by cds.ismrm.org    
  News & More:
Enhanced Fast GRadient Echo 3-Dimensional (efgre3D) or THRIVE
   by www.mri.tju.edu    
Ultrashort echo time (UTE) MRI of the spine in thalassaemia
February 2004   by bjr.birjournals.org    
Searchterm 'View' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (50) Open this link in a new window
Fetal MRI
 
Ultrasound imaging is the primary fetal monitoring modality during pregnancy, nevertheless fetal MRI is increasingly used to image anatomical regions and structures difficult to see with sonography. Given its long record of safety, utility, and cost-effectiveness, ultrasound will remain the modality of first choice in fetal screening. However, MRI is beginning to fill a niche in situations where ultrasound does not provide enough information to diagnose abnormalities before the baby's birth. Magnetic resonance imaging of the fetus provides multiplanar views also in sub-optimal positions, better characterization of anatomic details of e.g. the fetal brain, and information for planning the mode of delivery and airway management at birth.

Indications:
Fetal anomalies
Maternal tumors
Pelvimetry
Examinations of the placenta

Modern fetal MRI requires no sedatives or muscle relaxants to control fetal movement. Ultrafast MRI techniques (e.g., single shot techniques like Half Fourier Acquisition Single shot Turbo spin Echo HASTE) enable images to be acquired in less than one second to eliminate fetal motion. Such technology has led to increased usage of fetal MRI, which can lead to earlier diagnosis of conditions affecting the baby and has proven useful in planning fetal surgery and designing postnatal treatments. As MR technology continues to improve, more advances in the prenatal diagnosis and treatment of fetal abnormalities are to expect. More advances in in-utero interventions are likely as well. Eventually, fetal MRI may replace even some prenatal tests that require invasive procedures such as amniocentesis.

For Ultrasound Imaging (USI) see Fetal Ultrasound at Medical-Ultrasound-Imaging.com.
 
Images, Movies, Sliders:
 Normal Fetus  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Pregnancy and Small Bowel Obstruction  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Fetus (Brain) and Dermoid in Mother  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Fetal MRI' (5).Open this link in a new window


• View the NEWS results for 'Fetal MRI' (2).Open this link in a new window.
 
Further Reading:
  Basics:
Fetal MRI is a Valuable Adjunct to Ultrasound in Detecting Abnormal Extracardiac Development in Fetuses with Congenital Heart Defects
Friday, 24 December 2021   by www.itnonline.com    
Specific Absorption Rate and Specific Energy Dose: Comparison of 1.5-T versus 3.0-T Fetal MRI
Tuesday, 7 April 2020   by pubs.rsna.org    
Untangling the Maze, Imaging the Fetus
Tuesday, 30 September 2014   by www.newswise.com    
In fetal MRI, 3T shown to have it all over 1.5T
Tuesday, 12 January 2016   by www.healthimaging.com    
  News & More:
Advances in medical imaging enable visualization of white matter tracts in fetuses
Wednesday, 12 May 2021   by www.eurekalert.or    
Fetal CMR Detects Congenital Heart Defects, Changes Treatment Decisions
Monday, 29 March 2021   by www.diagnosticimaging.com    
MRI scans more precisely define and detect some abnormalities in unborn babies
Friday, 12 March 2021   by www.eurekalert.org    
Ultrasound and Magnetic Resonance Imaging of Agenesis of the Corpus Callosum in Fetuses: Frontal Horns and Cavum Septi Pellucidi Are Clues to Earlier Diagnosis
Monday, 29 June 2020   by pubmed.ncbi.nlm.nih.gov    
MRI helps predict preterm birth
Tuesday, 15 March 2016   by www.eurekalert.org    
3-T MRI advancing on ultrasound for imaging fetal abnormalities
Monday, 20 April 2015   by www.eurekalert.org    
Babies benefit from pioneering 'miniature' MRI scanner in Sheffield
Friday, 24 January 2014   by www.telegraph.co.uk    
Ultrasensitive Detector Pinpoints Big Problem in Tiny Fetal Heart
Tuesday, 6 April 2010   by www.sciencedaily.com    
Real-time MRI helps doctors assess beating heart in fetus
Thursday, 29 September 2005   by www.eurekalert.org    
MRI Resources 
Anatomy - Stimulator pool - Libraries - Colonography - Journals - Implant and Prosthesis pool
 
Flow ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
DESCRIPTION
Vascular ghosts (ghosting artifact), anomalous intensities in images
REASON
Movement of body fluids
HELP
Flow compensation, presaturation, triggering
Flow effects in MRI produce a range of artifacts, e.g. intravascular signal void by time of flight effects; turbulent dephasing and first echo dephasing, caused by flowing blood.
Through movement of the hydrogen nuclei (e.g. blood flow), there is a location change between the time these nuclei experience a radio frequency pulse and the time the emitted signal is received (because the repetition time is asynchronous with the pulsatile flow).
The blood flow occasionally produces intravascular high signal intensities due to flow related enhancement, even echo rephasing and diastolic pseudogating. The pulsatile laminar flow within vessels often produces a complex multilayered band that usually propagates outside the head in the phase encoded direction. Blood flow artifacts should be considered as a special subgroup of motion artifacts.
mri safety guidance
Image Guidance
Artifacts can be reduced by reduction of phase shifts with flow compensation (gradient moment nulling), suppression of the blood signal with saturation pulses parallel to the slices, synchronization of the imaging sequence with the heart cycle (cardiac triggering) or can be flipped 90° by swapping the phase//frequency encoding directions.

See also Flow Related Enhancement and Flow Effects.
 
Images, Movies, Sliders:
 Knee MRI Sagittal T1 003  Open this link in a new window
 
spacer

• View the DATABASE results for 'Flow Artifact' (6).Open this link in a new window

 
Further Reading:
  News & More:
MRI measure of blood flow over atherosclerotic plaque may detect dangerous plaque
Friday, 5 April 2013   by www.sciencecodex.com    
Advanced Visualization Techniques Could Change the Paradigm for Diagnosis and Treatment of Heart Disease
Thursday, 31 May 2012   by www.sciencedaily.com    
Searchterm 'View' was also found in the following services: 
spacer
News  (56)  Resources  (52)  Forum  (50)  
 
Fractional Echo
 
Fractional echo (also called asymmetric or partial echo) is used to shorten the echo time in a sequence, by acquiring partial echoes in the frequency direction. The reduction of echo time is possible because if the first part of the echo is not received, the dephasing lobe of the frequency encoding gradient is not to be on for quite as long, and this saves time.

See also Partial Fourier Technique, Read Conjugate Symmetry, Single Side View and acronyms for 'fractional echo' from different manufacturers.
spacer

• View the DATABASE results for 'Fractional Echo' (2).Open this link in a new window

 
Further Reading:
  News & More:
RARE
Monday, 3 December 2012   by www2.warwick.ac.uk    
Searchterm 'View' was also found in the following services: 
spacer
Radiology  (40) Open this link in a new windowUltrasound  (50) Open this link in a new window
GadoliniumForum -
related threadsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.
 
(Gd) Gadolinium is a Lanthanide element that is paramagnetic in its trivalent state.
This paramagnetic substance is used for MR imaging because of the effect of strongly decreasing the T1 relaxation times of the tissues to which gadolinium has access. When injected during magnetic resonance imaging, gadolinium will tend to change signal intensities by shortening the T1 time in its surroundings.
The relaxivity of gadolinium is an important measure of its efficacy, which is dependent on the chemical properties of the complex. The gadolinium ion cannot be used in its chloride, sulfate, or acetate forms because of poor tolerance and low solubility in water in the neutral pH range. Although toxic by itself, gadolinium can be given safely in a chelated form such as DTPA, that still retains much of its strong effect on relaxation times (relaxivity).

See also Dotarem®, Gadovist®, MultiHance®, Omniscan®, OptiMARK®, and Contrast Agents, the info sheet gives an overview and more in-dept information about different types of MRI contrast agents.
 
Images, Movies, Sliders:
 Normal Lung Gd Perfusion MRI  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Breast MRI Images T1 Pre - Post Contrast  Open this link in a new window
 Delayed Myocardial Contrast Enhancement from Infarct  Open this link in a new window
      

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Gadolinium' (66).Open this link in a new window


• View the NEWS results for 'Gadolinium' (17).Open this link in a new window.
 
Further Reading:
  Basics:
DNA-SEEKING GADOLINIUM COMPLEXES FOR NEUTRON CAPTURE THERAPY (NCT) (.pdf)
A LANTHANIDE LANTHOLOGY(.pdf)
   by www.phy.davidson.edu    
Gadolinium-Based Agents Safe for MRI Use
Monday, 18 April 2011   by www.renalandurologynews.com    
  News & More:
Stable Spherical Lanthanide Cluster for Magnetic Resonance Imaging Assembly
Wednesday, 26 April 2023   by www.miragenews.com    
Artificial Intelligence Processes Provide Solutions to Gadolinium Retention Concerns
Thursday, 30 January 2020   by www.itnonline.com    
Contrast Agents: Safety Profile
   by www.clinical-mri.com    
Contrast MRIs cause claims, concern, over residual metal in brain
Tuesday, 8 December 2015   by www.afr.com    
Contrast agent linked with brain abnormalities on MRI
Tuesday, 17 December 2013   by www.sciencecodex.com    
FDA Approves First Macrocyclic and Ionic Gadolinium-Contrast Agent for MRI
Friday, 22 March 2013   by www.itnonline.com    
Multimodal Nanoparticles for Quantitative Imaging(.pdf)
Tuesday, 13 December 2011   by alexandria.tue.nl    
Gadolinium oxide nanoparticles enhance MRI contrast
Thursday, 29 September 2011   by nanotechweb.org    
MRI Resources 
Bioinformatics - Jobs - Examinations - Claustrophobia - Implant and Prosthesis - Education pool
 
previous      46 - 50 (of 104)     next
Result Pages : [1]  [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]