Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'ffe' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'ffe' found in 17 terms [] and 429 definitions []
previous     16 - 20 (of 446)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'ffe' was also found in the following services: 
spacer
News  (436)  Resources  (66)  Forum  (134)  
 
Magic Angle Effect (Artifact)InfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Artifact Information
NAME
Magic angle
DESCRIPTION
Increase of the T2 time, bright signal in tendons
REASON
Angle about 55° to the main magnetic field
HELP
Angle not about 55°
The magic angle is a precisely defined angle, the value is approximately 54.7°. Hence, two nuclei with a dipolar coupling vector at an angle of approximately 54.7° to a strong external magnetic field have zero dipolar coupling.
Magic angle spinning is a technique in solid-state NMR spectroscopy, which employs this principle to remove or reduce dipolar couplings, thereby increasing spectral resolution. In MRI, the magic angle effect visualizes as bright spots through an increased T2 time on short echo time (TE) images, for e.g. collagen fibers of tendons and ligaments, which are oriented at the magic angle of approximately 54.7° to the magnetic field.
mri safety guidance
Image Guidance
Take care that tendons and ligaments are not oriented at about a 54.7° angle to the main magnetic field.
spacer
 
Further Reading:
  Basics:
Magic angle
   by en.wikipedia.org    
Magic Angle Effects
   by www.mritutor.org    
MRI Resources 
Abdominal Imaging - Calculation - Pregnancy - Crystallography - Raman Spectroscopy - Diffusion Weighted Imaging
 
Heteronuclear Overhauser Effect SpectroscopyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
spacer
MRI Resources 
Raman Spectroscopy - Cochlear Implant - Implant and Prosthesis - Breast MRI - RIS - Contrast Agents
 
Magnetic Resonance SpectroscopyMRI Resource Directory:
 - Spectroscopy pool -
 
(MRS / MRSI - Magnetic Resonance Spectroscopic Imaging) A method using the NMR phenomenon to identify the chemical state of various elements without destroying the sample. MRS therefore provides information about the chemical composition of the tissues and the changes in chemical composition, which may occur with disease processes.
Although MRS is primarily employed as a research tool and has yet to achieve widespread acceptance in routine clinical practice, there is a growing realization that a noninvasive technique, which monitors disease biochemistry can provide important new information for the clinician.
The underlying principle of MRS is that atomic nuclei are surrounded by a cloud of electrons, which very slightly shield the nucleus from any external magnetic field. As the structure of the electron cloud is specific to an individual molecule or compound, then the magnitude of this screening effect is also a characteristic of the chemical environment of individual nuclei.
In view of the fact that the resonant frequency is proportional to the magnetic field that it experiences, it follows that the resonant frequency will be determined not only by the external applied field, but also by the small field shift generated by the electron cloud. This shift in frequency is called the chemical shift (see also Chemical Shift). It should be noted that chemical shift is a very small effect, usually expressed in ppm of the main frequency. In order to resolve the different chemical species, it is therefore necessary to achieve very high levels of homogeneity of the main magnetic field B0. Spectra from humans usually require shimming the magnet to approximately one part in 100. High resolution spectra of liquid samples demand a homogeneity of about one part in 1000.
In addition to the effects of factors such as relaxation times that can affect the NMR signal, as seen in magnetic resonance imaging, effects such as J-modulation or the transfer of magnetization after selective excitation of particular spectral lines can affect the relative strengths of spectral lines.
In the context of human MRS, two nuclei are of particular interest - H-1 and P-31. (PMRS - Proton Magnetic Resonance Spectroscopy) PMRS is mainly employed in studies of the brain where prominent peaks arise from NAA, choline containing compounds, creatine and creatine phosphate, myo-inositol and, if present, lactate; phosphorus 31 MR spectroscopy detects compounds involved in energy metabolism (creatine phosphate, adenosine triphosphate and inorganic phosphate) and certain compounds related to membrane synthesis and degradation. The frequencies of certain lines may also be affected by factors such as the local pH. It is also possible to determine intracellular pH because the inorganic phosphate peak position is pH sensitive.
If the field is uniform over the volume of the sample, "similar" nuclei will contribute a particular frequency component to the detected response signal irrespective of their individual positions in the sample. Since nuclei of different elements resonate at different frequencies, each element in the sample contributes a different frequency component. A chemical analysis can then be conducted by analyzing the MR response signal into its frequency components.

See also Spectroscopy.
spacer

• View the DATABASE results for 'Magnetic Resonance Spectroscopy' (8).Open this link in a new window


• View the NEWS results for 'Magnetic Resonance Spectroscopy' (3).Open this link in a new window.
 
Further Reading:
  News & More:
Accuracy of Proton Magnetic Resonance Spectroscopy in Distinguishing Neoplastic From Non-neoplastic Brain Lesions
Saturday, 2 December 2023   by www.cureus.com    
Searchterm 'ffe' was also found in the following services: 
spacer
News  (436)  Resources  (66)  Forum  (134)  
 
ContrastForum -
related threads
 
Contrast is the relative difference of signal intensities in two adjacent regions of an image.
Due to the T1 and T2 relaxation properties in magnetic resonance imaging, differentiation between various tissues in the body is possible. Tissue contrast is affected by not only the T1 and T2 values of specific tissues, but also the differences in the magnetic field strength, temperature changes, and many other factors. Good tissue contrast relies on optimal selection of appropriate pulse sequences (spin echo, inversion recovery, gradient echo, turbo sequences and slice profile).
Important pulse sequence parameters are TR (repetition time), TE (time to echo or echo time), TI (time for inversion or inversion time) and flip angle. They are associated with such parameters as proton density and T1 or T2 relaxation times. The values of these parameters are influenced differently by different tissues and by healthy and diseased sections of the same tissue.
For the T1 weighting it is important to select a correct TR or TI. T2 weighted images depend on a correct choice of the TE. Tissues vary in their T1 and T2 times, which are manipulated in MRI by selection of TR, TI, and TE, respectively. Flip angles mainly affect the strength of the signal measured, but also affect the TR/TI/TE parameters.
Conditions necessary to produce different weighted images:
T1 Weighted Image: TR value equal or less than the tissue specific T1 time - TE value less than the tissue specific T2 time.
T2 Weighted Image: TR value much greater than the tissue specific T1 time - TE value greater or equal than the tissue specific T2 time.
Proton Density Weighted Image: TR value much greater than the tissue specific T1 time - TE value less than the tissue specific T2 time.

See also Image Contrast Characteristics, Contrast Reversal, Contrast Resolution, and Contrast to Noise Ratio.
 
Images, Movies, Sliders:
 Fetus (Brain) and Dermoid in Mother  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 Anatomic MRI of the Knee 1  Open this link in a new window
    
SlidersSliders Overview

 Anatomic Imaging of the Liver  Open this link in a new window
      

 Brain MRI Inversion Recovery  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Contrast' (373).Open this link in a new window


• View the NEWS results for 'Contrast' (77).Open this link in a new window.
 
Further Reading:
  Basics:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
Image Characteristics and Quality
   by www.sprawls.org    
  News & More:
A natural boost for MRI scans
Monday, 21 October 2013   by www.eurekalert.org    
A groundbreaking new graphene-based MRI contrast agent
Friday, 8 June 2012   by www.nanowerk.com    
New MRI Chemical Offers Amazing Contrast
Friday, 22 January 2010   by news.softpedia.com    
MRI Resources 
Libraries - MRI Physics - Devices - Education pool - Artifacts - Jobs pool
 
MRI RisksMRI Resource Directory:
 - Safety -
 
The subacute risks and side effects of magnetic and RF fields (for patients and staff) have been intensively examined for a long time, but there have been no long-term studies following persons who have been exposed to the static magnetic fields used in MRI. However, no permanent hazardous effects of a static magnetic field exposure upon human beings have yet been demonstrated.
Temporary possible side effects of high magnetic and RF fields:
Varying magnetic fields can induce so-called magnetic phosphenes that occur when an individual is subject to rapid changes of 2-5 T/s, which can produce a flashing sensation in the eyes. This temporary side effect does not seem to damage the eyes. Static field strengths used for clinical MRI examinations vary between 0.2 and 3.0 tesla;; field changes during the MRI scan vary in the dimension of mT/s. Experimental imaging units can use higher field strengths of up to 14.0 T, which are not approved for human use.
The Radio frequency pulses mainly produce heat, which is absorbed by the body tissue. If the power of the RF radiation is very high, the patient may be heated too much. To avoid this heating, the limit of RF exposure in MRI is up to the maximum specific absorption rate (SAR) of 4 W/kg whole body weight (can be different from country to country). For MRI safety reasons, the MRI machine starts no sequence, if the SAR limit is exceeded.
Very high static magnetic fields are needed to reduce the conductivity of nerves perceptibly. Augmentation of T waves is observed at fields used in standard imaging but this side effect in MRI is completely reversible upon removal from the magnet. Cardiac arrhythmia threshold is typically set to 7-10 tesla. The magnetohydrodynamic effect, which results from a voltage occurring across a vessel in a magnetic field and percolated by a saline solution such as blood, is irrelevant at the field strengths used.

The results of some animal and cellular studies suggest the possibility that electromagnetic fields may act as co-carcinogens or tumor promoters, but the data are inconclusive. Up to 45 tesla, no important effects on enzyme systems have been observed. Neither changes in enzyme kinetics, nor orientation changes in macromolecules have been conclusively demonstrated.
There are some publications associating an increase in the incidence of leukemia with the location of buildings close to high-current power lines with extremely low-frequency (ELF) electromagnetic radiation of 50-60 Hz, and industrial exposure to electric and magnetic fields but a transposition of such effects to MRI or MRS seems unlikely.
Under consideration of the MRI safety guidelines, real dangers or risks of an exposure with common MRI field strengths up to 3 tesla as well as the RF exposure during the MRI scan, are not to be expected.

For more MRI safety information see also Nerve Conductivity, Contraindications, Pregnancy and Specific Absorption Rate.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer

• View the DATABASE results for 'MRI Risks' (9).Open this link in a new window


• View the NEWS results for 'MRI Risks' (3).Open this link in a new window.
 
Further Reading:
  Basics:
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Working with MRI machines may cause vertigo: Study
Wednesday, 25 June 2014   by www.cos-mag.com    
Physics of MRI Safety
   by www.aapm.org    
When Your Kid Needs an MRI: Optimizing the Experience
Tuesday, 29 March 2016   by health.usnews.com    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
CT contrast reaction raises MRI contrast risk
Tuesday, 22 February 2022   by www.sciencedaily.com    
CSU study explores MRI distress and patient experience
Thursday, 7 May 2020   by www.portnews.com.au    
Noise from Magnetic Resonance Imaging Can Have Short-Term Impact on Hearing
Thursday, 22 February 2018   by www.diagnosticimaging.com    
Women with permanent make-up tattoos suffer horrific facial burns after going in for MRI scans - which create an electric current in the ink
Monday, 4 July 2016   by www.dailymail.co.uk    
FDA Dials in on MRI Safety of Passive Implantable Medical Devices
Wednesday, 24 June 2015   by www.raps.org    
MRI Resources 
Anatomy - Implant and Prosthesis - Collections - Contrast Agents - Directories - Spine MRI
 
previous      16 - 20 (of 446)     next
Result Pages : [1 2 3 4]  [5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]