| Info Sheets |
| | | | | | | | | | | | | | | | | | | | | | | | |
| Out- side |
| | | | |
|
| | | 'functional Magnetic Resonance Imaging' | |
Result : Searchterm 'functional Magnetic Resonance Imaging' found in 1 term [] and 7 definitions [], (+ 3 Boolean[] results
| 1 - 5 (of 11) nextResult Pages : [1] [2] [3] | | | | Searchterm 'functional Magnetic Resonance Imaging' was also found in the following services: | | | | |
| | |
| |
|
(fMRI) Functional magnetic resonance imaging is a technique used to determine the dynamic brain function, often based on echo planar imaging, but can also be performed by using contrast agents and observing their first pass effects through brain tissue. Functional magnetic resonance imaging allows insights in a dysfunctional brain as well as into the basic workings of the brain.
The in functional brain MRI most frequently used effect to assess brain function is the blood oxygenation level dependent contrast ( BOLD) effect, in which differential changes in brain perfusion and their resultant effect on the regional distribution of oxy- to deoxyhaemoglobin are observable because of the different 'intrinsic contrast media' effects of the two haemoglobin forms. Increased brain activity causes an increased demand for oxygen, and the vascular system actually overcompensates for this, increasing the amount of oxygenated haemoglobin. Because deoxygenated haemoglobin attenuates the MR signal, the vascular response leads to a signal increase that is related to the neural activity.
Functional imaging relates body function or thought to specific locations where the neural activity is taking place. The brain is scanned at low resolution but at a fast rate (typically once every 2-3 seconds). Structural MRI together with fMRI provides an anatomical baseline and best spatial resolution.
Interactions can also be seen from the motor cortex to the cerebellum or basal ganglia in the case of a movement disorder such as ataxia. For example: by a finger movement the briefly increase in the blood circulation of the appropriate part of the brain controlling that movement, can be measured. | | | | | • Share the entry 'Functional Magnetic Resonance Imaging': | | | | | | | | Further Reading: | | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'functional Magnetic Resonance Imaging' was also found in the following services: | | | | |
| | |
| |
|
Brain imaging, magnetic resonance imaging of the head or skull, cranial magnetic resonance tomography (MRT), neurological MRI - they describe all the same radiological imaging technique for medical diagnostic.
Magnetic resonance imaging of the human brain includes the anatomic description and the detection of lesions. Special techniques like diffusion weighted imaging, functional magnetic resonance imaging ( fMRI) and spectroscopy provide also information about the function and chemical metabolites of the brain.
MRI provides detailed pictures of brain and nerve tissues in multiple planes without obstruction by overlying bones. Brain MRI is the procedure of choice for most brain disorders. It provides clear images of the brainstem and posterior brain, which are difficult to view on a CT scan. It is also useful for the diagnosis of demyelinating disorders (disorders such as multiple sclerosis (MS) that cause destruction of the myelin sheath of the nerve).
With this noninvasive procedure also the evaluation of blood flow and the flow of cerebrospinal fluid (CSF) is possible. Different MRA methods, also without contrast agents can show a venous or arterial angiogram. MRI can distinguish tumors, inflammatory lesions, and other pathologies from the normal brain anatomy. However, MRI scans are also used instead other methods to avoid the dangers of interventional procedures like angiography (DSA - digital subtraction angiography) as well as of repeated exposure to radiation as required for computed tomography (CT) and other X-ray examinations.
A ( birdcage) bird cage coil achieves uniform excitation and reception and is commonly used to study the brain. Usually a brain MRI procedure includes FLAIR, T2 weighted and T1 weighted sequences in two or three planes. See also Fetal MRI, Fluid Attenuation Inversion Recovery ( FLAIR), Perfusion Imaging and High Field MRI. See also Arterial Spin Labeling. | | | | | | | | • View the DATABASE results for 'Brain MRI' (14).
| | | • View the NEWS results for 'Brain MRI' (32).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
MRI Reveals Significant Brain Abnormalities Post-COVID Monday, 21 November 2022 by neurosciencenews.com | | |
Combining genetics and brain MRI can aid in predicting chances of Alzheimer's disease Wednesday, 29 June 2022 by www.sciencedaily.com | | |
Roundup: How Even Mild COVID Can Affect the Brain; This Many Daily Steps Improves Longevity; and More Friday, 11 March 2022 by baptisthealth.net | | |
A low-cost and shielding-free ultra-low-field brain MRI scanner Tuesday, 14 December 2021 by www.nature.com | | |
Large International Study Reveals Spectrum of COVID-19 Brain Complications Tuesday, 9 November 2021 by www.itnonline.com | | |
Brain MRI-Based Subtypes of MS Predict Disability Progression, Treatment Response Thursday, 13 May 2021 by www.neurologyadvisor.com | | |
New MRI method improves detection of disease changes in the brain's network Thursday, 11 June 2020 by www.compute.dtu.dk | | |
New NeuroCOVID Classification System Uses MRI to Categorize Patients Friday, 12 June 2020 by www.diagnosticimaging.com | | |
New MRI technique can 'see' molecular changes in the brain Thursday, 5 September 2019 by medicalxpress.com | | |
Talking therapy or medication for depression: Brain scan may help suggest better treatment Monday, 27 March 2017 by www.newsnation.in | | |
MRI identifies brain abnormalities in chronic fatigue syndrome patients Wednesday, 29 October 2014 by www.eurekalert.org | | |
MRIs Useful in Tracking Depression in MS Patients Tuesday, 1 July 2014 by www.hcplive.com | | |
Contrast agent linked with brain abnormalities on MRI Tuesday, 17 December 2013 by www.sciencecodex.com | | |
MRIs Reveal Signs of Brain Injuries Not Seen in CT Scans Tuesday, 18 December 2012 by www.sciencedaily.com | | |
Iron Deposits in the Brain May Be Early Indicator of MS Wednesday, 13 November 2013 by www.healthline.com | | |
Migraine Sufferers Have Thicker Brain Cortex Tuesday, 20 November 2007 by www.medicalnewstoday.com |
|
| |
| | | | | |
| |
|
(EPI) Echo planar imaging is one of the early magnetic resonance imaging sequences (also known as Intascan), used in applications like diffusion, perfusion, and functional magnetic resonance imaging. Other sequences acquire one k-space line at each phase encoding step. When the echo planar imaging acquisition strategy is used, the complete image is formed from a single data sample (all k-space lines are measured in one repetition time) of a gradient echo or spin echo sequence (see single shot technique) with an acquisition time of about 20 to 100 ms.
The pulse sequence timing diagram illustrates an echo planar imaging sequence from spin echo type with eight echo train pulses. (See also Pulse Sequence Timing Diagram, for a description of the components.)
In case of a gradient echo based EPI sequence the initial part is very similar to a standard gradient echo sequence. By periodically fast reversing the readout or frequency encoding gradient, a train of echoes is generated.
EPI requires higher performance from the MRI scanner like much larger gradient amplitudes. The scan time is dependent on the spatial resolution required, the strength of the applied gradient fields and the time the machine needs to ramp the gradients.
In EPI, there is water fat shift in the phase encoding direction due to phase accumulations. To minimize water fat shift (WFS) in the phase direction fat suppression and a wide bandwidth (BW) are selected. On a typical EPI sequence, there is virtually no time at all for the flat top of the gradient waveform. The problem is solved by "ramp sampling" through most of the rise and fall time to improve image resolution.
The benefits of the fast imaging time are not without cost. EPI is relatively demanding on the scanner hardware, in particular on gradient strengths, gradient switching times, and receiver bandwidth. In addition, EPI is extremely sensitive to image artifacts and distortions. | | | | • View the DATABASE results for 'Echo Planar Imaging' (19).
| | | • View the NEWS results for 'Echo Planar Imaging' (1).
| | | | Further Reading: | Basics:
|
|
| |
| | | Searchterm 'functional Magnetic Resonance Imaging' was also found in the following services: | | | | |
| | |
| |
|
(Hb) Haemoglobin is the major endogenous oxygen-binding molecule, responsible for binding oxygen in the lung and transporting it to the tissues by means of the circulation. Haemoglobin is contained in very high concentration in the red blood cells.
Haemoglobin is an Fe chelate tightly binding one Fe ion in its II oxidation state where it carries the charge 2+ (ferrous iron).
If an oxygen molecule is bound to Hb, Hb is called oxyhaemoglobin, if no oxygen molecule is bound it is called deoxyhaemoglobin.
When haemoglobin is oxidized (i.e. in a haematoma), Fe2+ is transformed into Fe3+.
The resulting haemoglobin is then called metoxyhaemoglobin (Hb Fe3+). Deoxyhaemoglobin and metoxyhaemoglobin act as paramagnetic contrast agents in MR, while oxyhaemoglobin is diamagnetic. This partly explains the special appearance of an aging haematoma in MR imaging and is also the basic of the blood oxygenation level dependent contrast ( BOLD) used in functional magnetic resonance imaging of the brain ( fMRI). | | | | • View the DATABASE results for 'Haemoglobin' (10).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | Searchterm 'functional Magnetic Resonance Imaging' was also found in the following services: | | | | |
| | |
| |
|
( MRI) Magnetic resonance imaging is a noninvasive medical imaging technique that uses the interaction between radio frequency pulses, a strong magnetic field and body tissue to obtain images of slices/planes from inside the body. These magnets generate fields from approx. 2000 times up to 30000 times stronger than that of the Earth. The use of nuclear magnetic resonance principles produces extremely detailed pictures of the body tissue without the need for x-ray exposure and gives diagnostic information of various organs.
Measured are mobile hydrogen nuclei (protons are the hydrogen atoms of water, the 'H' in H 20), the majority of elements in the body. Only a small part of them contribute to the measured signal, caused by their different alignment in the magnetic field. Protons are capable of absorbing energy if exposed to short radio wave pulses (electromagnetic energy) at their resonance frequency. After the absorption of this energy, the nuclei release this energy so that they return to their initial state of equilibrium.
This transmission of energy by the nuclei as they return to their initial state is what is observed as the MRI signal. The subtle differing characteristic of that signal from different tissues combined with complex mathematical formulas analyzed on modern computers is what enables MRI imaging to distinguish between various organs. Any imaging plane, or slice, can be projected, and then stored or printed.
The measured signal intensity depends jointly on the spin density and the relaxation times ( T1 time and T2 time), with their relative importance depending on the particular imaging technique and choice of interpulse times. Any motion such as blood flow, respiration, etc. also affects the image brightness.
Magnetic resonance imaging is particularly sensitive in assessing anatomical structures, organs and soft tissues for the detection and diagnosis of a broad range of pathological conditions. MRI pictures can provide contrast between benign and pathological tissues and may be used to stage cancers as well as to evaluate the response to treatment of malignancies. The need for biopsy or exploratory surgery can be eliminated in some cases, and can result in earlier diagnosis of many diseases. See also MRI History and Functional Magnetic Resonance Imaging (fMRI). | | | | | | • View the DATABASE results for 'Magnetic Resonance Imaging MRI' (9).
| | | • View the NEWS results for 'Magnetic Resonance Imaging MRI' (222).
| | | | Further Reading: | Basics:
|
|
News & More:
| |
| |
| | | | |
| | 1 - 5 (of 11) nextResult Pages : [1] [2] [3] |
| |
|
| |
| Look Ups |
| |