Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'relaxation' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'relaxation' found in 15 terms [] and 75 definitions []
previous     31 - 35 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
MRI History
 
•
Sir Joseph Larmor (1857-1942) developed the equation that the angular frequency of precession of the nuclear spins being proportional to the strength of the magnetic field. [Larmor relationship]
•
In the 1930's, Isidor Isaac Rabi (Columbia University) succeeded in detecting and measuring single states of rotation of atoms and molecules, and in determining the mechanical and magnetic moments of the nuclei.
•
Felix Bloch (Stanford University) and Edward Purcell (Harvard University) developed instruments, which could measure the magnetic resonance in bulk material such as liquids and solids. (Both honored with the Nobel Prize for Physics in 1952.) [The birth of the NMR spectroscopy]
•
In the early 70's, Raymond Damadian (State University of New York) demonstrated with his NMR device, that there are different T1 relaxation times between normal and abnormal tissues of the same type, as well as between different types of normal tissues.
•
In 1973, Paul Lauterbur (State University of New York) described a new imaging technique that he termed Zeugmatography. By utilizing gradients in the magnetic field, this technique was able to produce a two-dimensional image (back-projection). (Through analysis of the characteristics of the emitted radio waves, their origin could be determined.) Peter Mansfield further developed the utilization of gradients in the magnetic field and the mathematically analysis of these signals for a more useful imaging technique. (Paul C Lauterbur and Peter Mansfield were awarded with the 2003 Nobel Prize in Medicine.)
•
In 1975, Richard Ernst introduced 2D NMR using phase and frequency encoding, and the Fourier Transform. Instead of Paul Lauterbur's back-projection, he timely switched magnetic field gradients ('NMR Fourier Zeugmatography'). [This basic reconstruction method is the basis of current MRI techniques.]
•
1977/78: First images could be presented. A cross section through a finger by Peter Mansfield and Andrew A. Maudsley. Peter Mansfield also could present the first image through the abdomen.
•
In 1977, Raymond Damadian completed (after 7 years) the first MR scanner (Indomitable). In 1978, he founded the FONAR Corporation, which manufactured the first commercial MRI scanner in 1980. Fonar went public in 1981.
•
1981: Schering submitted a patent application for Gd-DTPA dimeglumine.
•
1982: The first 'magnetization-transfer' imaging by Robert N. Muller.
•
In 1983, Toshiba obtained approval from the Ministry of Health and Welfare in Japan for the first commercial MRI system.
•
In 1984, FONAR Corporation receives FDA approval for its first MRI scanner.
•
1986: Jürgen Hennig, A. Nauerth, and Hartmut Friedburg (University of Freiburg) introduced RARE (rapid acquisition with relaxation enhancement) imaging. Axel Haase, Jens Frahm, Dieter Matthaei, Wolfgang Haenicke, and Dietmar K. Merboldt (Max-Planck-Institute, Göttingen) developed the FLASH (fast low angle shot) sequence.
•
1988: Schering's MAGNEVIST gets its first approval by the FDA.
•
In 1991, fMRI was developed independently by the University of Minnesota's Center for Magnetic Resonance Research (CMRR) and Massachusetts General Hospital's (MGH) MR Center.
•
From 1992 to 1997 Fonar was paid for the infringement of it's patents from 'nearly every one of its competitors in the MRI industry including giant multi-nationals as Toshiba, Siemens, Shimadzu, Philips and GE'.
•
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
 
• Related Searches:
    • Lumbar Spine MRI
    • Brain MRI
    • Open MRI
    • Magnetic Resonance Imaging MRI
    • Device
 
Further Reading:
  Basics:
Magnetic Resonance Imaging, History & Introduction
2000   by www.cis.rit.edu    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
Fonar Our History
   by www.fonar.com    
  News & More:
Scientists win Nobels for work on MRI
Tuesday, 10 June 2003   by usatoday30.usatoday.com    
2001 Lemelson-MIT Lifetime Achievement Award Winner
   by web.mit.edu    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
MRI Resources 
PACS - Universities - Manufacturers - Health - MRI Accidents - Anatomy
 
Magnetization Transfer
 
(MT) Magnetization Transfer was accidentally discovered by Wolff and Balaban in 1989. Conventional MRI is based on the differences in T1, T2 and the proton density (water content and the mobility of water molecules) in tissue; it relies primarily on free (bulk) water protons. The T2 relaxation times are greater than 10 ms and detectable. The T2 relaxation times of protons associated with macromolecules are less then 1 ms and not detectable in MRI.
Magnetization Transfer Imaging (MTI) is based on the magnetization interaction (through dipolar and/or chemical exchange) between bulk water protons and macromolecular protons. By applying an off resonance radio frequency pulse to the macromolecular protons, the saturation of these protons is then transferred to the bulk water protons. The result is a decrease in signal (the net magnetization of visible protons is reduced), depending on the magnitude of MT between tissue macromolecules and bulk water. With MTI, the presence or absence of macromolecules (e.g. in membranes, brain tissue) can be seen.
The magnetization transfer ratio (MTR) is the difference in signal intensity with or without MT.

See also Magnetization Transfer Contrast.
spacer

• View the DATABASE results for 'Magnetization Transfer' (7).Open this link in a new window

 
Further Reading:
  Basics:
MICRO-STRUCTURAL QUANTITIES - DIFFUSION, MAGNETISATION DECAY, MAGNETISATION TRANSFER AND PERMEABILITY(.pdf)
   by www.dundee.ac.uk    
The Basics of MRI
   by www.cis.rit.edu    
  News & More:
Gold-manganese nanoparticles for targeted diagnostic and imaging
Thursday, 12 November 2015   by www.nanowerk.com    
Magnetization Transfer Magnetic Resonance Imaging of Hepatic Tumors(.pdf)
   by www.nci.edu.eg    
MRI Resources 
Spectroscopy pool - Veterinary MRI - Calculation - Developers - Safety Training - Research Labs
 
R1
 
Longitudinal relaxation rate equal to reciprocal of T1 relaxation time (R1= 1/T1).
spacer

• View the DATABASE results for 'R1' (33).Open this link in a new window

Searchterm 'relaxation' was also found in the following services: 
spacer
News  (8)  Resources  (3)  Forum  (8)  
 
R2
 
Longitudinal relaxation rate equal to reciprocal of T2 relaxation time (R2 = 1/T2).
spacer

• View the DATABASE results for 'R2' (26).Open this link in a new window


• View the NEWS results for 'R2' (1).Open this link in a new window.
MRI Resources 
MRI Physics - Bioinformatics - Pediatric and Fetal MRI - Cochlear Implant - Lung Imaging - MR Myelography
 
Superparamagnetic Contrast AgentsInfoSheet: - Contrast Agents - 
Intro, Overview, 
Characteristics, 
Types of, 
etc.MRI Resource Directory:
 - Contrast Agents -
 
Small particles of ferrite are used as superparamagnetic contrast medium in MR imaging (appearing predominantly dark on MRI). These agents exhibit strong T1 relaxation properties, and due to susceptibility differences to their surroundings also produce a strongly varying local magnetic field, which enhances T2 relaxation to darken the contrast media containing structures.
Superparamagnetic contrast agents are also known by the abbreviation SPIO's (small particle iron oxide or superparamagnetic iron oxide) and USPIO's (ultrasmall particle iron oxide or ultrasmall superparamagnetic iron oxide).
Two types of USPIO will be available on the market as blood pool agents, while SPIO's have been used as darkening contrast agents for liver imaging. As particulate matter they are taken up by the RES. Very small particles of less than 300 nanometers also remain intravascular for a prolonged period of time and thus can serve as blood pool agents.

See also the related poll result: 'The development of contrast agents in MRI is'
spacer

• View the DATABASE results for 'Superparamagnetic Contrast Agents' (12).Open this link in a new window

 
Further Reading:
  News & More:
Optimized Labelling of Human Monocytes with Iron Oxide MR Contrast Agents
Sunday, 30 November 2003   by rsna2003.rsna.org    
Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells
Tuesday, 5 January 2016   by www.nature.com    
MRI Resources 
Research Labs - Coils - Equipment - Most Wanted - NMR - Intraoperative MRI
 
previous      31 - 35 (of 90)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]