Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'signal' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'signal' found in 11 terms [] and 357 definitions []
previous     81 - 85 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Reverse Fast Imaging with Steady State PrecessionInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(PSIF) A heavily T2* weighted contrast enhanced gradient echo (mirrored FISP) technique. Because TE is relatively long, there are much flow artifacts and less signal to noise. In normal gradient echo techniques a FID-signal results after the RF pulses. This FID is rephased very fast and just before the next FID follows a spin echo signal. The SE is spoiled in FLASH sequences, but with PSIF sequences, only the SE is measured, not the FID.
spacer
 
Further Reading:
  News & More:
Fast T2 weighted imaging by PSIF at 0.2T for interventional MRI.(.pdf)
   by cds.ismrm.org    
MRI Resources 
Distributors - Raman Spectroscopy - Fluorescence - Nerve Stimulator - Breast Implant - MRA
 
Sensitivity EncodingInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(SENSE) A MRI technique for relevant scan time reduction. The spatial information related to the coils of a receiver array are utilized for reducing conventional Fourier encoding. In principle, SENSE can be applied to any imaging sequence and k-space trajectories. However, it is particularly feasible for Cartesian sampling schemes. In 2D Fourier imaging with common Cartesian sampling of k-space sensitivity encoding by means of a receiver array enables to reduce the number of Fourier encoding steps.
SENSE reconstruction without artifacts relies on accurate knowledge of the individual coil sensitivities. For sensitivity assessment, low-resolution, fully Fourier-encoded reference images are required, obtained with each array element and with a body coil.
The major negative point of parallel imaging techniques is that they diminish SNR in proportion to the numbers of reduction factors. R is the factor by which the number of k-space samples is reduced. In standard Fourier imaging reducing the sampling density results in the reduction of the FOV, causing aliasing. In fact, SENSE reconstruction in the Cartesian case is efficiently performed by first creating one such aliased image for each array element using discrete Fourier transformation (DFT).
The next step then is to create a full-FOV image from the set of intermediate images. To achieve this one must undo the signal superposition underlying the fold-over effect. That is, for each pixel in the reduced FOV the signal contributions from a number of positions in the full FOV need to be separated. These positions form a Cartesian grid corresponding to the size of the reduced FOV.
The advantages are especially true for contrast-enhanced MR imaging such as dynamic liver MRI (liver imaging) , 3 dimensional magnetic resonance angiography (3D MRA), and magnetic resonance cholangiopancreaticography (MRCP).
The excellent scan speed of SENSE allows for acquisition of two separate sets of hepatic MR images within the time regarded as the hepatic arterial-phase (double arterial-phase technique) as well as that of multidetector CT.
SENSE can also increase the time efficiency of spatial signal encoding in 3D MRA. With SENSE, even ultrafast (sub second) 4D MRA can be realized.
For MRCP acquisition, high-resolution 3D MRCP images can be constantly provided by SENSE. This is because SENSE resolves the presence of the severe motion artifacts due to longer acquisition time. Longer acquisition time, which results in diminishing image quality, is the greatest problem for 3D MRCP imaging.
In addition, SENSE reduces the train of gradient echoes in combination with a faster k-space traversal per unit time, thereby dramatically improving the image quality of single shot echo planar imaging (i.e. T2 weighted, diffusion weighted imaging).
spacer

• View the DATABASE results for 'Sensitivity Encoding' (12).Open this link in a new window

 
Further Reading:
  News & More:
Image Characteristics and Quality
   by www.sprawls.org    
MRI Resources 
Bioinformatics - Mobile MRI - Pediatric and Fetal MRI - MRI Technician and Technologist Jobs - Stimulator pool - Service and Support
 
Sequential Line Imaging
 
MR imaging techniques in which the image is built up from successive lines through the object. In various schemes, the lines are isolated by oscillating magnetic field gradients or selective excitation, and then the NMR signals from the selected line are encoded for position by detecting the FID or spin echo in the presence of a magnetic field gradient along the line; the Fourier transformation of the detected signal then yields the distribution of emitted NMR signal along the line.
spacer

• View the DATABASE results for 'Sequential Line Imaging' (4).Open this link in a new window

Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Single Turn SolenoidInfoSheet: - Coils - 
Intro, 
Overview, 
etc.MRI Resource Directory:
 - Coils -
 
Single turn solenoid is a transmit and receive RF imaging coil that, in general, has a cylindrical shape. The solenoidal configuration of this coil is a further developed planar surface coil. While surface coils have a strong coupling and high signal to noise ratio to nearby signals they have a marked loss of signal beyond one radius from the center of the coil. With a solenoidal coil design the imaging object lies within one radius from the coil center, which improved imaging (of extremities, such as wrist or knee).

See also Radio Frequency Coil and Imaging of the Extremities.
spacer

• View the DATABASE results for 'Single Turn Solenoid' (3).Open this link in a new window

MRI Resources 
Fluorescence - Most Wanted - Spectroscopy - Musculoskeletal and Joint MRI - Colonography - Contrast Agents
 
Slice Thickness
 
(THK) The thickness of an imaging slice. As the slice profile may not be sharp edged, a criterion such as the distance between the points at half the sensitivity of the maximum (FWHM) or the equivalent rectangular width (the width of a rectangular slice profile with the same maximum height and same area) is used to determine thickness.
mri safety guidance
Image Guidance
For the image quality its important to choose the best fitting slice thickness for an examination. When a small item is entirely contained within the slice thickness with other tissue of differing signal intensity then the resulting signal displayed on the image is a combination of these two intensities. If the slice is the same thickness or thinner than the small structure, only that structures signal intensity is displayed on the image. This partial volume averaging effect explains the vanishing of fine details by choosing slices too large for the scanned object.

See also Partial Volume Artifact.
spacer

• View the DATABASE results for 'Slice Thickness' (63).Open this link in a new window

 
Further Reading:
  Basics:
MRI Quality Control Program
   by www.simplyphysics.com    
  News & More:
Optimizing Musculoskeletal MR
   by rad.usuhs.mil    
MRI Resources 
Resources - Spectroscopy pool - Breast Implant - Mass Spectrometry - Bioinformatics - Stimulator pool
 
previous      81 - 85 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]