Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'signal' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'signal' found in 11 terms [] and 357 definitions []
previous     91 - 95 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Time of Flight AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(TOF) The time of flight angiography is used for the imaging of vessels. Usually the sequence type is a gradient echo sequences with short TR, acquired with slices perpendicular to the direction of blood flow.
The source of diverse flow effects is the difference between the unsaturated and presaturated spins and creates a bright vascular image without the invasive use of contrast media. Flowing blood moves unsaturated spins from outside the slice into the imaging plane. These completely relaxed spins have full equilibrium magnetization and produce (when entering the imaging plane) a much higher signal than stationary spins if a gradient echo sequence is generated. This flow related enhancement is also referred to as entry slice phenomenon, or inflow enhancement.
Performing a presaturation slab on one side parallel to the slice can selectively destroy the MR signal from the in-flowing blood from this side of the slice. This allows the technique to be flow direction sensitive and to separate arteriograms or venograms. When the local magnetization of moving blood is selectively altered in a region, e.g. by selective excitation, it carries the altered magnetization with it when it moves, thus tagging the selected region for times on the order of the relaxation times.
For maximum flow signal, a complete new part of blood has to enter the slice every repetition (TR) period, which makes time of flight angiography sensitive to flow-velocity. The choice of TR and slice thickness should be appropriate to the expected flow-velocities because even small changes in slice thickness influences the performance of the TOF sequence. The use of sequential 2 dimensional Fourier transformation (2DFT) slices, 3DFT slabs, or multiple 3D slabs (chunks) are depending on the coverage required and the range of flow-velocities.
3D TOF MRA is routinely used for evaluating the Circle of Willis.

See also Magnetic Resonance Angiography and Contrast Enhanced Magnetic Resonance Angiography.
 
Images, Movies, Sliders:
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
Radiology-tip.comradCT Angiography,  Coronary Angiogram
spacer
Medical-Ultrasound-Imaging.comColor Power Angio,  Doppler Ultrasound
spacer
 
• Related Searches:
    • 3 Dimensional Magnetic Resonance Angiography
    • Flow Effects
    • Inflow Magnetic Resonance Angiography
    • Blood Flow-Velocity
    • Flow Related Enhancement
 
Further Reading:
  Basics:
MR–ANGIOGRAPHY(.pdf)
  News & More:
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
MRI Training Courses - IR - Pediatric and Fetal MRI - MRCP - Equipment - Shoulder MRI
 
Turbo Field EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(TFE) Turbo field echo is a gradient echo pulse sequence with data acquisition after an initial 180° (similar to IR) preparation pulse for contrast enhancement. The difference between a FFE and TFE other than the speed of the sequence is that the image is acquired while approaching steady state (the echoes are collected during the time in which the tissues are experiencing T1 relaxation).
The contrast is prepared one time, which means the contrast is changing while the echoes are collected and can be manipulated by selecting the type and timing of the prepulse. A delay time is given before the actual image acquisition. To achieve T1 contrast the 180° prepulse is followed by an operator selected delay time, that results in no signal from the targeted tissue. So when the echoes are acquired, no signal is present, additional RF spoiling is performed to optimize for T1 contrast. The delay chosen corresponds to when T1 relaxation reaches and suppresses T1 signal or optimizes the difference between tissues. Contrast for these sequences are enhanced when K-space is filled using a centric or low-high ordering. A TFE can be acquired with a 2D or 3D technique and with or without T1, T2 weighting.
See Ultrafast Gradient Echo Sequence, TurboFLASH and Magnetization Prepared Rapid Gradient Echo (MPRAGE).
spacer

• View the DATABASE results for 'Turbo Field Echo' (6).Open this link in a new window

 
Further Reading:
  Basics:
Sequence for Philips(.pdf)
   by www.droid.cuhk.edu.hk    
Pediatric and Adult Cochlear Implantation1
2003   by radiographics.rsnajnls.org    
MRI Resources 
MRI Accidents - Equipment - Bioinformatics - Education pool - Spectroscopy pool - Databases
 
Volume Imaging
 
Imaging techniques in which NMR signals are gathered from the whole object volume to be imaged at once, with appropriate encoding pulse RF and gradient sequences to encode positions of the spins. Many sequential plane imaging techniques can be generalized to volume imaging, at least in principle. Advantages include potential improvement in signal to noise ratio by including signal from the whole volume at once; disadvantages include a bigger computational task for image reconstruction and longer image acquisition times (although the entire volume can be imaged from the one set of data). Also called simultaneous volume imaging.
 
Images, Movies, Sliders:
 Knee MRI Transverse 001  Open this link in a new window
 
spacer

• View the DATABASE results for 'Volume Imaging' (7).Open this link in a new window


• View the NEWS results for 'Volume Imaging' (4).Open this link in a new window.
 
Further Reading:
  News & More:
3D-DOCTOR Tutorial
   by www.ablesw.com    
4D-Fueled AI with DCE-MRI Improves Breast Lesion Characterization
Friday, 26 February 2021   by www.diagnosticimaging.com    
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Volumetric Imaging
 
Volumetric imaging is a 3D technique where all the MRI signals are collected from the entire tissue sample and imaged as a whole entity, therefore providing a high signal to noise ratio. The acquisition of isotropic voxels or thin slices with high spatial resolution allows to create multiplanar reconstructions in all planes; a compensation for the usually longer scan time. The acquisition time can be reduced by parallel imaging technique.
New T2 weighted variants of 3D sequences (FSE-XETA, T2-SPACE, VISTA) have been introduced that differ from conventional FSE sequences. An echo train containing up to 200 echoes obtained at a minimum echo spacing allows very fast acquisition. A flip angle modulation (flip angle sweep - FAS) during the FSE readout carries magnetization as long as possible to avoid blurring and provide optimal signal at the effective echo time. This type of imaging is well suited for brain and spine MRI procedures.
Newer T1 weighted variants include Liver Acquisition with Volume Acquisition (LAVA) and T1W High Resolution Isotropic Volume Examination (THRIVE), which have advantages for dynamic breath hold imaging in liver and abdominal examinations.

See also Volume Imaging, 3 Dimensional Imaging.
 
Images, Movies, Sliders:
 Brain MRI Sagittal T1 001  Open this link in a new window
    
 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 MRI of the Skull Base  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for 'Volumetric Imaging' (4).Open this link in a new window


• View the NEWS results for 'Volumetric Imaging' (1).Open this link in a new window.
 
Further Reading:
  Basics:
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
3-D VOLUMETRIC IMAGING FOR STEREOTACTIC LESIONAL AND DEEP BRAIN STIMULATION SURGERY
MRI Resources 
Developers - Jobs - Contrast Agents - IR - Stent - Libraries
 
3 Dimensional Magnetic Resonance AngiographyInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - MRA -
 
(3D MRA) The 3D angiography technique can be applied to focus on fast flowing (arterial) blood and to visualize small tortuous vessels. 3D TOF images are less sensitive to turbulent flow artifacts. The advantage of this approach is that the signal, acquired from the entire volume has an increased signal to noise ratio. Slices are defined by a second phase encoded axis, which divides the volume into 'partitions'. 3D TOF MRA is acquired with 3D FT slabs or multiple overlapping thin 3D FT slabs (MOTSA) depending on the coverage required and the range of flow-velocities under examination.
Such 3D techniques can provide equal spatial resolution along all three axes, i.e. be 'isotropic', or the partition thickness can be greater or less than the in plane spatial resolution in which case can be said to be 'anisotropic'. The circle of Willis, anatomy as well as its fast arterial flow, lends itself well to both 3D TOF and 2D or 3D phase contrast angiography.
 
Images, Movies, Sliders:
 CE MRA of the Aorta  Open this link in a new window
    
SlidersSliders Overview

 PCA-MRA 3D Brain Venography Colored MIP  Open this link in a new window
    

 CE-MRA of the Carotid Arteries Colored MIP  Open this link in a new window
    
SlidersSliders Overview

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 
spacer

• View the DATABASE results for '3 Dimensional Magnetic Resonance Angiography' (2).Open this link in a new window

 
Further Reading:
  Basics:
CHAPTER 55: Ischemia
2003
Magnetic resonance angiography: current status and future directions
Wednesday, 9 March 2011   by www.jcmr-online.com    
MRI Resources 
MRCP - Devices - Spectroscopy - NMR - Cardiovascular Imaging - Education
 
previous      91 - 95 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]