Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'signal' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'signal' found in 11 terms [] and 357 definitions []
previous     26 - 30 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Black Blood MRAForum -
related threadsInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Cardiovascular Imaging -
 
With this magnetic resonance angiography technique flowing blood appears dark.
MR black blood techniques have been developed for cardiovascular imaging to improve segmentation of myocardium from the blood pool. Black blood MRA techniques decrease the signal from blood with reference to the myocardium and make it easier to perform cardiac chamber segmentation.
ECG gated spin echo sequences with presaturation pulses for magnetization preparation will show strong intravascular signal loss due to flow effects when appropriate imaging conditions including spatial presaturation are used. The sequence use the flow void effect as blood passes rapidly through the selected slice.
For dark blood preparation, a pair of nonselective and selective 180° inversion pulses are used, followed by a long inversion time to null signal from inflowing blood. A second selective inversion pulse can also be applied with short inversion time to null the fat signal. These in cardiac imaging used black blood techniques are referred to as double inversion recovery T1 measurement turbo spin echo or fast spin echo, and double-inversion recovery STIR.
 
Images, Movies, Sliders:
 Normal Dual Inversion Fast Spin-echo  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer
 
• Related Searches:
    • Blood Flow-Velocity
    • Inversion
    • Magnetic Resonance Angiography MRA
    • Minimum Intensity Projection
    • Inversion Time
MRI Resources 
Journals - Raman Spectroscopy - Implant and Prosthesis - Cochlear Implant - Safety Training - Knee MRI
 
Contrast Enhanced FASTInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(CE-FAST) In this technique, the MR signal is sampled immediately prior to each RF pulse. Because the signal is formed by a true spin echo, its contrast is predominantly T2-, rather than T2*-based and is less sensitive to artifacts and signal losses related to field non-uniformity and susceptibility variation. While the signal to noise ratio is limited, the CE-FAST method has the advantage of good contrast.

See Contrast Enhanced Gradient Echo Sequence and Gradient Echo Sequence.
spacer

• View the DATABASE results for 'Contrast Enhanced FAST' (5).Open this link in a new window

MRI Resources 
Quality Advice - Societies - Coils - Collections - Directories - Devices
 
Contrast Enhanced Gradient Echo SequenceInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
Contrast enhanced GRE sequences provide T2 contrast but have a relatively poor SNR. Repetitive RF pulses with small flip angles together with appropriate gradient profiles lead to the superposition of two resonance signals.
The first signal is due to the free induction decay FID observed after the first and all ensuing RF excitations.
The second is a resonance signal obtained as a result of a spin echo generated by the second and all addicted RF-pulses.
Hence it is absent after the first excitation, it is a result of the free induction decay of the second to last RF-excitation and has a TE, which is almost 2TR. For this echo to occur the gradients have to be completely symmetrical relative to the half time between two RF-pulses, a condition that makes it difficult to integrate this pulse sequence into a multiple slice imaging technique. The second signal not only contains echo contributions from free induction decay, but obviously weakened by T2-decay. Since the echo is generated by a RF-pulse, it is truly T2 rather than T2* weighted. Correspondingly it is also less sensitive to susceptibility changes and field inhomogeneities.
Companies use different acronyms to describe certain techniques.
Different terms (see also acronyms) for these gradient echo pulse sequences:
CE-FAST Contrast Enhanced Fourier Acquired Steady State,
CE-FFE Contrast Enhanced Fast Field Echo,
CE-GRE Contrast Enhanced Gradient-Echo,
DE-FGR Driven Equilibrium FGR,
FADE FASE Acquisition Double Echo,
PSIF Reverse Fast Imaging with Steady State Precession,
SSFP Steady State Free Precession,
T2 FFE Contrast Enhanced Fast Field Echo (T2 weighted).

In this context, 'contrast enhanced' refers to the pulse sequence, it does not mean enhancement with a contrast agent.
spacer

• View the DATABASE results for 'Contrast Enhanced Gradient Echo Sequence' (4).Open this link in a new window

Searchterm 'signal' was also found in the following services: 
spacer
News  (50)  Resources  (8)  Forum  (52)  
 
Convolution
 
Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in digital signal processing. This operation is mostly used together with Fourier transformations for MRI signal / image processing.
spacer

• View the DATABASE results for 'Convolution' (2).Open this link in a new window

 
Further Reading:
  Basics:
Convolution
   by www.wam.umd.edu    
Fourier Transforms and 2-D Image Processing
   by robotics.eecs.berkeley.edu    
The Scientist and Engineer's Guide to Digital Signal Processing
  News & More:
New Compressed Sensing Technique to Accelerate MRI Acquisition Process
Tuesday, 9 October 2012   by www.azosensors.com    
MRI Resources 
Online Books - Devices - - Journals - MRI Physics - Resources
 
Digitization Noise ArtifactInfoSheet: - Artifacts - 
Case Studies, 
Reduction Index, 
etc.MRI Resource Directory:
 - Artifacts -
 
Quick Overview
Please note that there are different common names for this artifact.
Artifact Information
NAME
Digitization noise, digitizer quantization, low dynamic range
DESCRIPTION
Noise
REASON
Finite voltage resolution of the digitizer
HELP
Larger range of sensitivity
Noise introduced into digitized signals by the finite voltage resolution of the digitizer.
You can see the effects of quantization if the noise level is smaller than the digitizer quantum. If the signal dynamic range is too great, the highest intensities from overloading the digitizer may result in the weaker features being lost in the digitization noise.
mri safety guidance
Image Guidance
This can be resolved by using an analog to digital converter with a larger range of sensitivity or by using techniques to reduce the dynamic range, e.g. suppressing the signal from water in order to detect the signal from less abundant compounds.
spacer

• View the DATABASE results for 'Digitization Noise Artifact' (2).Open this link in a new window

 
Further Reading:
  Basics:
MRI Artifact Gallery
   by chickscope.beckman.uiuc.edu    
MRI Resources 
Guidance - Education pool - Mobile MRI Rental - Fluorescence - Claustrophobia - Developers
 
previous      26 - 30 (of 368)     next
Result Pages : [1 2 3]  [4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... ]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]