Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 MRI Database 
SEARCH FOR    
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
previous     11 - 15 (of 56)     next 
B--B2   Ba-Ba   Ba-Ba     Ba-Bi   Bi-Bi   Bi-Bl   Bl-Bl   Bl-Bo   Bo-Bo   Bo-Br   Br-Bu   By-By   
MRI Resources 
Education pool - Cochlear Implant - MRI Technician and Technologist Schools - Services and Supplies - Diffusion Weighted Imaging - MRI Reimbursement
 
Balanced SequenceForum -
there are related threadsInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.
 
This family of sequences uses a balanced gradient waveform. This waveform will act on any stationary spin on resonance between 2 consecutive RF pulses and return it to the same phase it had before the gradients were applied. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Prior to the next TR in the slice encoding, the phase encoding and the frequency encoding direction, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. If the balanced gradients maintain the longitudinal and transverse magnetization, the result is that both T1 and T2 contrast are represented in the image.
This pulse sequence produces images with increased signal from fluid (like T2 weighted sequences), along with retaining T1 weighted tissue contrast. Balanced sequences are particularly useful in cardiac MRI. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition.
Usually the gray and white matter contrast is poor, making this type of sequence unsuited for brain MRI. Modifications like ramping up and down the flip angles can increase signal to noise ratio and contrast of brain tissues (suggested under the name COSMIC - Coherent Oscillatory State acquisition for the Manipulation of Image Contrast).
These sequences include e.g. Balanced Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with Steady Precession (TrueFISP, sometimes short TRUFI), Completely Balanced Steady State (CBASS) and Balanced SARGE (BASG).
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Infarct 4 Chamber Cine  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the DATABASE results for 'Balanced Sequence' (5).Open this link in a new window

 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Magnetic resonance imaging guided musculoskeletal interventions at 0.23T: Chapter 4. Materials and methods
2002
Balanced Turbo Field EchoInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(BTFE) A gradient echo pulse sequence with a balanced gradient waveform and data acquisition after an initial preparation pulse for contrast enhancement.

See Steady State Free Precession (SSFP) and Balanced Sequence.
spacer

• View the DATABASE results for 'Balanced Turbo Field Echo' (3).Open this link in a new window

MRI Resources 
Software - Directories - MRI Training Courses - MRI Technician and Technologist Jobs - Raman Spectroscopy - Crystallography
 
BandwidthForum -
there are related threads
 
(BW) Bandwidth is a measure of frequency range, the range between the highest and lowest frequency allowed in the signal. For analog signals, which can be mathematically viewed as a function of time, bandwidth is the width, measured in Hertz of a frequency range in which the signal's Fourier transform is nonzero.
The receiver (or acquisition) bandwidth (rBW) is the range of frequencies accepted by the receiver to sample the MR signal. The receiver bandwidth is changeable (see also acronyms for 'bandwidth' from different manufacturers) and has a direct relationship to the signal to noise ratio (SNR) (SNR = 1/squareroot (rBW). The bandwidth depends on the readout (or frequency encoding) gradient strength and the data sampling rate (or dwell time).
Bandwidth is defined by BW = Sampling Rate/Number of Samples.
A smaller bandwidth improves SNR, but can cause spatial distortions, also increases the chemical shift. A larger bandwidth reduces SNR (more noise from the outskirts of the spectrum), but allows faster imaging.
The transmit bandwidth refers to the RF excitation pulse required for slice selection in a pulse sequence. The slice thickness is proportional to the bandwidth of the RF pulse (and inversely proportional to the applied gradient strength). Lowering the pulse bandwidth can reduce the slice thickness.
mri safety guidance
Image Guidance
A higher bandwidth is used for the reduction of chemical shift artifacts (lower bandwidth - more chemical shift - longer dwell time - but better signal to noise ratio). Narrow receive bandwidths accentuate this water fat shift by assigning a smaller number of frequencies across the MRI image. This effect is much more significant on higher field strengths. At 1.5 T, fat and water precess 220 Hz apart, which results in a higher shift than in Low Field MRI.
Lower bandwidth (measured in Hz) = higher water fat shift (measured in pixel shift).

See also Aliasing, Aliasing Artifact, Frequency Encoding, and Chemical Shift Artifact.
spacer

• View the DATABASE results for 'Bandwidth' (19).Open this link in a new window

 
Further Reading:
  Basics:
Bandwidth
   by en.wikipedia.org    
  News & More:
Automated Quality Assurance for Magnetic Resonance Image with Extensions to Diffusion Tensor Imaging(.pdf)
   by scholar.lib.vt.edu    
A Real-Time Navigator Approach to Compensating for Motion Artifacts in Coronary Magnetic Resonance Angiography
   by www.cs.nyu.edu    
Baseline
 
A generally smooth background curve, only the data above the baseline/background will be included in the calculation. Either the integrals or peak heights of the resonance spectral lines in the spectrum are measured. For BOLD imaging it is a non-activated image, in contrast to an activated image.
spacer

• View the DATABASE results for 'Baseline' (9).Open this link in a new window

 
Further Reading:
  News & More:
Study is first to find that CPAP therapy restores brain tissue in adults with sleep apnea
Monday, 7 June 2010   by www.eurekalert.org    
Baseline Correction
 
Postprocessing of the spectrum to suppress baseline deviations from zero that may be superimposed on desired spectral lines. These deviations may be due either to various instrumental effects or to very broad spectral lines.
spacer

• View the DATABASE results for 'Baseline Correction' (3).Open this link in a new window

MRI Resources 
Colonography - Developers - Crystallography - Examinations - Sequences - Non-English
 
previous       11 - 15 (of 56)      next 
B--B2   Ba-Ba    Ba-Ba    Ba-Bi   Bi-Bi   Bi-Bl   Bl-Bl   Bl-Bo   Bo-Bo   Bo-Br   Br-Bu   By-By   
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Personalized protocols (age, gender, body habitus, etc.) lead to :
more automated planning 
improved patient comfort 
better diagnostics 
optimized image quality 
nothing 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]