From ISOL Technology
'Ultra high field MR system, it's right close to you.
FORTE 3.0T is the new standard for the future ultra high field MR system.
If you are pushing the limits of your existing clinical MR scanner, the FORTE will surely take you to the next level of diagnostic imaging.
FORTE is the core leader of the medical technology in the 21st century. Proving effects of fMRI that cannot be measured with MRI less than 2.0T.'
(FT) The Fourier transformation is a mathematical procedure to separate out the frequency components of a signal from its amplitudes as a function of time, or the inverse Fourier transformation (IFT) calculates the time domain from the frequency domain. The FT is used to generate the spectrum from the free induction decay or spin echo in the pulse MR technique and is essential to most MR imaging techniques. The Fourier transformation can be generalized to multiple dimensions, e.g. to relate an image to its corresponding k-space representation, or to include chemical shift information in some chemical shift imaging techniques. Fourier transformation analysis allows spatial information to be reconstructed from the raw data.
MR imaging techniques in which at least one dimension is phase encoded by applying variable gradient pulses along that dimension before reading out the MR signal with a magnetic field gradient perpendicular to the variable gradient. The Fourier transformation is then used to reconstruct an image from the set of encoded MR signals. An imaging technique of this type is spin warp imaging.
Fractional echo (also called asymmetric or partial echo) is used to shorten the echo time in a sequence, by acquiring partial echoes in the frequency direction. The reduction of echo time is possible because if the first part of the echo is not received, the dephasing lobe of the frequency encoding gradient is not to be on for quite as long, and this saves time.