Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 MRI Database 
SEARCH FOR    
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
previous     11 - 15 (of 98)     next 
Fa-Fa   Fa-Fa   Fa-Fa     Fa-Fa   Fa-Fe   Fe-Fe   Fe-Fe   Fe-Fe   Fe-Fi   Fi-Fi   Fi-Fi   Fi-Fl   FL-Fl   Fl-Fl   Fl-Fl   Fo-Fo   FO-Fr   Fr-Fr   Fr-Fu   Fu-Fu   
MRI Resources 
MRI Physics - Open Directory Project - Used and Refurbished MRI Equipment - Developers - Breast MRI - Examinations
 
Fast Imaging with Steady PrecessionInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.
 
(TrueFISP) True fast imaging with steady state precession is a coherent technique that uses a fully balanced gradient waveform. The image contrast with TrueFISP is determined by T2*//T1 properties and mostly depending on TR. The speed and relative motion insensitivity of acquisition help to make the technique reliable, even in patients who have difficulty with holding their breath.
Recent advances in gradient hardware have led to a decreased minimum TR. This combined with improved field shimming capabilities and signal to noise ratio, has allowed TrueFISP imaging to become practical for whole-body applications. There's mostly T2* weighting. With the used ultrashort TR-times T1 weighting is almost impossible. One such application is cardiac cine MR with high myocardium-blood contrast. Spatial and temporal resolution can be substantially improved with this technique, but contrast on the basis of the ratio of T2* to T1 is not sufficiently high in soft tissues. By providing T1 contrast, TrueFISP could then document the enhancement effects of T1 shortening contrast agents. These properties are useful for the anatomical delineation of brain tumors and normal structures. With an increase in SNR ratio with minimum TR, TrueFISP could also depict the enhancement effect in myoma uteri. True FSIP is a technique that is well suited for cardiac MR imaging. The imaging time is shorter and the contrast between the blood and myocardium is higher than that of FLASH.

See Steady State Free Precession.
 
Images, Movies, Sliders:
 Cardiac Infarct 4 Chamber Cine 1  Open this link in a new window
    
 
spacer

• View the DATABASE results for 'Fast Imaging with Steady Precession' (3).Open this link in a new window

 
Further Reading:
  Basics:
Accurate T1 Quantification Using a Breath-hold Inversion Recovery TrueFISP Sequence
2003   by rsna2003.rsna.org    
Fast Imaging with Steady State PrecessionInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.
 
(FISP) A fast imaging sequence, which attempts to combine the signals observed separately in the FADE sequence, generally sensitive about magnetic susceptibility artifacts and imperfections in the gradient waveforms. Confusingly now often used to refer to a refocused FLASH type sequence.
This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state. FISP uses a RF pulse that alternates in sign. Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis. With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, flip angle 30-45°) eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that FISP exhibits vastly different contrast to FLASH type sequences. Used for T1 orthopedic imaging, 3D MPR, cardiography and angiography.
spacer

• View the DATABASE results for 'Fast Imaging with Steady State Precession' (5).Open this link in a new window

 
Further Reading:
  Basics:
MRI techniques improve pulmonary embolism detection
Monday, 19 March 2012   by medicalxpress.com    
MRI Resources 
Calculation - Anatomy - Spine MRI - Artifacts - Pediatric and Fetal MRI - Most Wanted
 
Fast Low Angle Recalled EchoesInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.
 
(FLARE) Fast Low Angle Recalled Echoes is a gradient echo sequence, typically with low flip angles and refocused gradient echo.

See also Refocused Gradient Echo Sequence and Flip Angle.
spacer
Fast Low Angle ShotInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(FLASH) A fast sequence producing signals called gradient echo with low flip angles. FLASH sequences are modifications, which incorporate or remove the effects of transverse coherence respectively.
FLASH uses a semi-random spoiler gradient after each echo to spoil the steady state (to destroy any remaining transverse magnetization) by causing a spatially dependent phase shift. The transverse steady state is spoiled but the longitudinal steady state depends on the T1 values and the flip angle. Extremely short TR times are possible, as a result the sequence provides a mechanism for gaining extremely high T1 contrast by imaging with TR times as brief as 20 to 30 msec while retaining reasonable signal levels. It is important to keep the TE as short as possible to suppress susceptibility artifacts.
The T1 contrast depends on the TR as well as on flip angle, with short TE.
Small flip angles and short TR results in proton density, and long TR in T2* weighting.
With large flip angles and short TR result T1 weighted images.

TR and flip angle adjustment:

TR 3000 ms, Flip Angle 90°
TR 1500 ms, Flip Angle 45°
TR 700 ms, Flip Angle 25°
TR 125 ms, Flip Angle 10°

The apparent ability to trade TR against flip angle for purposes of contrast and the variation in SNR as the scan time (TR) is reduced.

See also Gradient Echo Sequence.
 
Images, Movies, Sliders:
 Fetus (Brain) and Dermoid in Mother  Open this link in a new window
      

Courtesy of  Robert R. Edelman

 
spacer

• View the DATABASE results for 'Fast Low Angle Shot' (5).Open this link in a new window

 
Further Reading:
  News & More:
Motion Compensation in MR Imaging
   by ccn.ucla.edu    
Turbo-FLASH Based Arterial Spin Labeled Perfusion MRI at 7 T
Thursday, 20 June 2013   by www.plosone.org    
Usefulness of MR Imaging for Diseases of the Small Intestine: Comparison with CT
2000   by www.ncbi.nlm.nih.gov    
Fast Relaxation Fast Spin EchoInfoSheet: - Sequences -
Intro, Overview, 
Types of, 
etc.
 
(FRFSE, FR-FSE) The fast relaxation fast spin echo sequence provides high signal intensity of fluids even with short repetition times, and can be used with parallel imaging techniques for short breath hold imaging or respiratory gating for free-breathing, high isotropic resolution MR imaging. After signal decay at the end of the echo train, a negative 90° pulse align spins with long T2 from the transverse plane to the longitudinal plane, leading to a much faster recovery of tissues with long T2 time to the equilibrium and thus better contrast between tissues with long and short T2.
Fast relaxation FSE has advantages also for volumetric imaging as the TR can be substantially reduced and thus the scan time. The sequence can be post processed with maximum intensity projection, surface or volume rendering algorithms to visualize anatomical details in brain or spine MRI. Cerebro spinal fluid pulsation artifacts, often problematic in the cervical or thoracic spine may be reduced by radial sampling, in particular when combined with acquisitions of the PROPELLER type.

See also Fast spin echo, Driven Equilibrium.
 
Images, Movies, Sliders:
 Shoulder Sagittal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
 Shoulder Coronal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
MRI Resources 
Cochlear Implant - Claustrophobia - Homepages - MRI Accidents - Spectroscopy - Mobile MRI
 
previous       11 - 15 (of 98)      next 
Fa-Fa   Fa-Fa    Fa-Fa    Fa-Fa   Fa-Fe   Fe-Fe   Fe-Fe   Fe-Fe   Fe-Fi   Fi-Fi   Fi-Fi   Fi-Fl   FL-Fl   Fl-Fl   Fl-Fl   Fo-Fo   FO-Fr   Fr-Fr   Fr-Fu   Fu-Fu   
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]