Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 MRI Database 
SEARCH FOR    
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
previous     106 - 110 (of 150)     next 
Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   MA-MA   MA-MA   MA-MA   MA-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Me   ME-Me   Me-Mi   Mn-Mo   Mo-Mo   Mo-Mo   Mo-MR   MR-MR     MR-MS   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mz   
MRI Resources 
Implant and Prosthesis pool - Stent - Service and Support - Cochlear Implant - Colonography - Pacemaker
 
MRIForum -
there are related threads
 
Magnetic resonance imaging is a radiological diagnostic procedure without X-rays.

Magnetic resonance imaging, see also: MRI history, medical imaging, nuclear magnetic resonance, spin, precession, T1 time, T2 time, MRI equipment, MRI devices, MRI coils, MRI sequences, MRI contrast agents.

MRI resources, MRI congresses, and MRI news.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
 Breast MRI Images T2 And T1  Open this link in a new window
 TOF-MRA Circle of Willis Inverted MIP  Open this link in a new window
    

 
spacer

• View the NEWS results for 'MRI' (418).Open this link in a new window.

• View the DATABASE results for 'MRI' (561).Open this link in a new window

 
Further Reading:
  Basics:
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
  News & More:
MRI for Patients with Cardiac Device, Covered
Thursday, 3 October 2019   by www.aapc.com    
Bringing More Value to Imaging Departments With MRI
Friday, 4 October 2019   by www.itnonline.com    
The world's strongest MRI machines are pushing human imaging to new limits
Wednesday, 31 October 2018   by www.nature.com    
MRI EquipmentInfoSheet: - Devices -
Intro, 
Types of Magnets, 
Overview, etc.
 
The MRI equipment consists of following components:
The magnet generates the magnetic field.
Shim coils make the magnetic field homogeneous.
Radio frequency coils transmit the radio signal into the body part being imaged.
Receiver coils detect the returning radio signals.
Gradient coils provide spatial localization of the signals.
Shielding coils produce a magnetic field that cancels the field from primary coils in regions where it is not desired.
The computer reconstructs the signals into the image.
The MRI scanner room is shielded by a faraday shield.
Different cooling systems cool the magnet, the scanner room and the technique room.

Better MRI equipment and software design along with the latest information technology improves system maintenance and overall communication. Software and digital imaging and communications in medicine (DICOM) compatibility allows to network into hospital databases, helps to modify pulse sequences, data post processing, and archiving via picture archiving and communication system (PACS).

See also the related poll result: 'Most outages of your scanning system are caused by failure of'
Radiology-tip.comradCT Scanner,  Radiography
spacer
Medical-Ultrasound-Imaging.comUltrasound Machine,  Ultrasound System Performance
spacer

• View the NEWS results for 'MRI Equipment' (4).Open this link in a new window.

• View the DATABASE results for 'MRI Equipment' (13).Open this link in a new window

 
Further Reading:
  News & More:
Low Power MRI Helps Image Lungs, Brings Costs Down
Thursday, 10 October 2019   by www.medgadget.com    
MRI safety targeted as new group offers credentialing test
Monday, 12 January 2015   by www.modernhealthcare.com    
Audio/Video System helps patients relax during MRI scans
Monday, 8 December 2014   by news.thomasnet.com    
Dräger introduces anaesthesia system for MRI environment
Wednesday, 12 December 2007   by www.mtbeurope.info    
MRI Resources 
Corporations - Manufacturers - Hospitals - Stimulator pool - Breast MRI - MRCP
 
MRI History
 
Sir Joseph Larmor (1857-1942) developed the equation that the angular frequency of precession of the nuclear spins being proportional to the strength of the magnetic field. [Larmor relationship]
In the 1930's, Isidor Isaac Rabi (Columbia University) succeeded in detecting and measuring single states of rotation of atoms and molecules, and in determining the mechanical and magnetic moments of the nuclei.
Felix Bloch (Stanford University) and Edward Purcell (Harvard University) developed instruments, which could measure the magnetic resonance in bulk material such as liquids and solids. (Both honored with the Nobel Prize for Physics in 1952.) [The birth of the NMR spectroscopy]
In the early 70's, Raymond Damadian (State University of New York) demonstrated with his NMR device, that there are different T1 relaxation times between normal and abnormal tissues of the same type, as well as between different types of normal tissues.
In 1973, Paul Lauterbur (State University of New York) described a new imaging technique that he termed Zeugmatography. By utilizing gradients in the magnetic field, this technique was able to produce a two-dimensional image (back-projection). (Through analysis of the characteristics of the emitted radio waves, their origin could be determined.) Peter Mansfield further developed the utilization of gradients in the magnetic field and the mathematically analysis of these signals for a more useful imaging technique. (Paul C Lauterbur and Peter Mansfield were awarded with the 2003 Nobel Prize in Medicine.)
In 1975, Richard Ernst introduced 2D NMR using phase and frequency encoding, and the Fourier Transform. Instead of Paul Lauterbur's back-projection, he timely switched magnetic field gradients ('NMR Fourier Zeugmatography'). [This basic reconstruction method is the basis of current MRI techniques.]
1977/78: First images could be presented. A cross section through a finger by Peter Mansfield and Andrew A. Maudsley. Peter Mansfield also could present the first image through the abdomen.
In 1977, Raymond Damadian completed (after 7 years) the first MR scanner (Indomitable). In 1978, he founded the FONAR Corporation, which manufactured the first commercial MRI scanner in 1980. Fonar went public in 1981.
1981: Schering submitted a patent application for Gd-DTPA dimeglumine.
1982: The first 'magnetization-transfer' imaging by Robert N. Muller.
In 1983, Toshiba obtained approval from the Ministry of Health and Welfare in Japan for the first commercial MRI system.
In 1984, FONAR Corporation receives FDA approval for its first MRI scanner.
1986: Jürgen Hennig, A. Nauerth, and Hartmut Friedburg (University of Freiburg) introduced RARE (rapid acquisition with relaxation enhancement) imaging. Axel Haase, Jens Frahm, Dieter Matthaei, Wolfgang Haenicke, and Dietmar K. Merboldt (Max-Planck-Institute, Göttingen) developed the FLASH (fast low angle shot) sequence.
1988: Schering's MAGNEVIST gets its first approval by the FDA.
In 1991, fMRI was developed independently by the University of Minnesota's Center for Magnetic Resonance Research (CMRR) and Massachusetts General Hospital's (MGH) MR Center.
From 1992 to 1997 Fonar was paid for the infringement of it's patents from 'nearly every one of its competitors in the MRI industry including giant multi-nationals as Toshiba, Siemens, Shimadzu, Philips and GE'.
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine Overview  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer

• View the NEWS results for 'MRI History' (1).Open this link in a new window.

• View the DATABASE results for 'MRI History' (6).Open this link in a new window

 
Further Reading:
  Basics:
Magnetic Resonance Imaging, History & Introduction
2000   by www.cis.rit.edu    
A Short History of the Magnetic Resonance Imaging (MRI)
   by www.teslasociety.com    
Fonar Our History
   by www.fonar.com    
  News & More:
Scientists win Nobels for work on MRI
Tuesday, 10 June 2003   by usatoday30.usatoday.com    
2001 Lemelson-MIT Lifetime Achievement Award Winner
   by web.mit.edu    
MRI's inside story
Thursday, 4 December 2003   by www.economist.com    
MRI Procedure
 
The MRI device is located within a specially shielded room (Faraday cage) to avoid outside interference, caused by the use of radio waves very close in frequency to those of ordinary FM radio stations.
The MRI procedure can easily be performed through clothing and bones, but attention must be paid to ferromagnetic items, because they will be attracted from the magnetic field. A hospital gown is appropriate, or the patient should wear clothing without metal fasteners and remove any metallic objects like hairpins, jewelry, eyeglasses, clocks, hearing aids, any removable dental work, lighters, coins etc., not only for MRI safety reasons. Metal in or around the scanned area can also cause errors in the reconstructed images (artifacts). Because the strong magnetic field can displace, or disrupt metallic objects, people with an implanted active device like a cardiac pacemaker cannot be scanned under normal circumstances and should not enter the MRI area.
The MRI machine can look like a short tunnel or has an open MRI design and the magnet does not completely surround the patient. Usually the patient lies on a comfortable motorized table, which slides into the scanner, depending on the MRI device, patients may be also able to sit up. If a contrast agent is to be administered, intravenous access will be placed. A technologist will operate the MRI machine and observe the patient during the examination from an adjacent room. Several sets of images are usually required, each taking some minutes. A typical MRI scan includes three to nine imaging sequences and may take up to one hour. Improved MRI devices with powerful magnets, newer software, and advanced sequences may complete the process in less time and better image quality.
Before and after the most MRI procedures no special preparation, diet, reduced activity, and extra medication is necessary. The magnetic field and radio waves are not felt and no pain is to expect.
Movement can blur MRI images and cause certain artifacts. A possible problem is the claustrophobia that some patients experience from being inside a tunnel-like scanner. If someone is very anxious or has difficulty to lie still, a sedative agent may be given. Earplugs and/or headphones are usually given to the patient to reduce the loud acoustic noise, which the machine produces during normal operation. A technologist observes the patient during the test. Some MRI scanners are equipped with televisions and music to help the examination time pass.
MRI is not a cheap examination, however cost effective by eliminating the need for invasive radiographic procedures, biopsies, and exploratory surgery. MRI scans can also save money while minimizing patient risk and discomfort. For example, MRI can reduce the need for X-ray angiography and myelography, and can eliminate unnecessary diagnostic procedures that miss occult disease.

See also Magnetic Resonance Imaging MRI, Medical Imaging, Cervical Spine MRI, Claustrophobia, MRI Risks and Pregnancy.
For Ultrasound Imaging (USI) see Ultrasound Imaging Procedures at Medical-Ultrasound-Imaging.com.

See also the related poll result: 'MRI will have replaced 50% of x-ray exams by'
 
Images, Movies, Sliders:
 Brain MRI Images Axial T2  Open this link in a new window
      

 Circle of Willis, Time of Flight, MIP  Open this link in a new window
    
SlidersSliders Overview

 CE-MRA of the Carotid Arteries  Open this link in a new window
    
SlidersSliders Overview

 Breast MRI Images T2 And T1 Pre - Post Contrast  Open this link in a new window
 Sagittal Knee MRI Images T1 Weighted  Open this link in a new window
      

 
spacer

• View the NEWS results for 'MRI Procedure' (6).Open this link in a new window.

• View the DATABASE results for 'MRI Procedure' (11).Open this link in a new window

 
Further Reading:
  News & More:
MRI technology visualizes heart metabolism in real time
Friday, 18 November 2022   by medicalxpress.com    
Are synthetic contrast-enhanced breast MRI images as good as the real thing?
Friday, 18 November 2022   by healthimaging.com    
Ultrafast MRI protocol reduces scan time by 10 minutes for cervical imaging
Monday, 26 September 2022   by healthimaging.com    
Study: Fast MRI can diagnose TBI without radiation
Wednesday, 18 September 2019   by www.aappublications.org    
Metamaterials boost sensitivity of MRI machines
Thursday, 14 January 2016   by www.eurekalert.org    
Working with MRI machines may cause vertigo: Study
Wednesday, 25 June 2014   by www.cos-mag.com    
MRI RisksMRI Resource Directory:
 - Safety -
 
The subacute risks and side effects of magnetic and RF fields (for patients and staff) have been intensively examined for a long time, but there have been no long-term studies following persons who have been exposed to the static magnetic fields used in MRI. However, no permanent hazardous effects of a static magnetic field exposure upon human beings have yet been demonstrated.
Temporary possible side effects of high magnetic and RF fields:
Varying magnetic fields can induce so-called magnetic phosphenes that occur when an individual is subject to rapid changes of 2-5 T/s, which can produce a flashing sensation in the eyes. This temporary side effect does not seem to damage the eyes. Static field strengths used for clinical MRI examinations vary between 0.2 and 3.0 tesla;; field changes during the MRI scan vary in the dimension of mT/s. Experimental imaging units can use higher field strengths of up to 14.0 T, which are not approved for human use.
The Radio frequency pulses mainly produce heat, which is absorbed by the body tissue. If the power of the RF radiation is very high, the patient may be heated too much. To avoid this heating, the limit of RF exposure in MRI is up to the maximum specific absorption rate (SAR) of 4 W/kg whole body weight (can be different from country to country). For MRI safety reasons, the MRI machine starts no sequence, if the SAR limit is exceeded.
Very high static magnetic fields are needed to reduce the conductivity of nerves perceptibly. Augmentation of T waves is observed at fields used in standard imaging but this side effect in MRI is completely reversible upon removal from the magnet. Cardiac arrhythmia threshold is typically set to 7-10 tesla. The magnetohydrodynamic effect, which results from a voltage occurring across a vessel in a magnetic field and percolated by a saline solution such as blood, is irrelevant at the field strengths used.

The results of some animal and cellular studies suggest the possibility that electromagnetic fields may act as co-carcinogens or tumor promoters, but the data are inconclusive. Up to 45 tesla, no important effects on enzyme systems have been observed. Neither changes in enzyme kinetics, nor orientation changes in macromolecules have been conclusively demonstrated.
There are some publications associating an increase in the incidence of leukemia with the location of buildings close to high-current power lines with extremely low-frequency (ELF) electromagnetic radiation of 50-60 Hz, and industrial exposure to electric and magnetic fields but a transposition of such effects to MRI or MRS seems unlikely.
Under consideration of the MRI safety guidelines, real dangers or risks of an exposure with common MRI field strengths up to 3 tesla as well as the RF exposure during the MRI scan, are not to be expected.

For more MRI safety information see also Nerve Conductivity, Contraindications, Pregnancy and Specific Absorption Rate.

See also the related poll result: 'In 2010 your scanner will probably work with a field strength of'
spacer

• View the NEWS results for 'MRI Risks' (3).Open this link in a new window.

• View the DATABASE results for 'MRI Risks' (9).Open this link in a new window

 
Further Reading:
  Basics:
MRI in Patients with Implanted Devices: Current Controversies
Monday, 1 August 2016   by www.acc.org    
Working with MRI machines may cause vertigo: Study
Wednesday, 25 June 2014   by www.cos-mag.com    
Physics of MRI Safety
   by www.aapm.org    
When Your Kid Needs an MRI: Optimizing the Experience
Tuesday, 29 March 2016   by health.usnews.com    
  News & More:
How safe is 7T MRI for patients with neurosurgical implants?
Thursday, 17 November 2022   by healthimaging.com    
CT contrast reaction raises MRI contrast risk
Tuesday, 22 February 2022   by www.sciencedaily.com    
CSU study explores MRI distress and patient experience
Thursday, 7 May 2020   by www.portnews.com.au    
Noise from Magnetic Resonance Imaging Can Have Short-Term Impact on Hearing
Thursday, 22 February 2018   by www.diagnosticimaging.com    
Women with permanent make-up tattoos suffer horrific facial burns after going in for MRI scans - which create an electric current in the ink
Monday, 4 July 2016   by www.dailymail.co.uk    
FDA Dials in on MRI Safety of Passive Implantable Medical Devices
Wednesday, 24 June 2015   by www.raps.org    
MRI Resources 
Mobile MRI - Breast MRI - Absorption and Emission - Most Wanted - Pacemaker - Shielding
 
previous       106 - 110 (of 150)      next 
Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Ma   MA-MA   MA-MA   MA-MA   MA-Ma   Ma-Ma   Ma-Ma   Ma-Ma   Ma-Me   ME-Me   Me-Mi   Mn-Mo   Mo-Mo   Mo-Mo   Mo-MR    MR-MR    MR-MS   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mu   Mu-Mz   
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



How AI will impact MRI :
only diagnostics 
saving time 
reducing cost 
makes planning obsolete 
reduce human knowledge 
not at all 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]