Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 

New acceleration techniques will :
reduce scan times 
cause artifacts 
increase expenses 
be useful if you have a lot of experience 
doesn't do much 
never heard of 




 
MRI Sequences
 
 
 
ball_redCoherent Gradient Echo 
Coherent gradient echo sequences can measure the free induction decay (FID), generated just after each excitation pulse or the echo formed prior to the next pulse. Coherent gradient echo sequences are very sensitive to magnetic field inhomogeneity. An alternative to spoiling is to incorporate residual transverse magnetization directly into the longitudinal steady state. These GRE sequences use a refocusing gradient in the phase encoding direction during the end module to maximize remaining transverse (xy) magnetization at the time when the next excitation is due, while the other two gradients are, in any case, balanced.
When the next excitation pulse is sent into the system with an opposed phase, it tilts the magnetization in the -a direction. As a result the z-magnetization is again partly tilted into the xy-plane, while the remaining xy-magnetization is tilted partly into the z-direction.
A fully refocused sequence with a properly selected and uniform f would yield higher signal, especially for tissues with long T2 relaxation times (high water content) so it is used in angiographic, myelographic or arthrographic examinations and is used for T2* weighting. The repetition time for this sequence has to be short. With short TR, coherent GE is also useable for breath hold and 3D technique. If the repetition time is about 200 msec there's no difference between spoiled or unspoiled GE. T1 weighting is better with spoiled techniques.
The common types include GRASS, FISP, FAST, and FFE.
The T2* component decreases with long TR and short TE. The T1 time is controlled by flip angle. The common TR is less than 50 ms and the common TE less than 15 ms
Other types have stronger T2 dependence but lower SNR. They include SSFP, CE-FAST, PSIF, and CE-FFE-T2.
Examples of fully refocused FID sequences are TrueFISP, bFFE and bTFE.

• View the DATABASE results for 'Coherent Gradient Echo' (6).Open this link in a new window

Gradient Field Echo with Contrast 

• View the DATABASE results for 'Gradient Field Echo with Contrast' (2).Open this link in a new window

Inversion Recovery Fast Gradient Recalled Acquisition in the Steady State 
Fast Field Echo 
(FFE) An echo signal generated from a FID by means of a bipolar switched magnetic gradient. The preparation module of the pulse sequence consists of an excitation pulse. The magnetization tilts by a flip angle between 0° and 90°.

See Gradient Echo Sequence and Refocused Gradient Echo Sequence.

• View the DATABASE results for 'Fast Field Echo' (9).Open this link in a new window

 
Further Reading:
  Basics:
Sequence for Philips(.pdf)
   by www.droid.cuhk.edu.hk    
Fast Imaging with Steady State Precession 
(FISP) A fast imaging sequence, which attempts to combine the signals observed separately in the FADE sequence, generally sensitive about magnetic susceptibility artifacts and imperfections in the gradient waveforms. Confusingly now often used to refer to a refocused FLASH type sequence.
This sequence is very similar to FLASH, except that the spoiler pulse is eliminated. As a result, any transverse magnetization still present at the time of the next RF pulse is incorporated into the steady state. FISP uses a RF pulse that alternates in sign. Because there is still some remaining transverse magnetization at the time of the RF pulse, a RF pulse of a degree flips the spins less than a degree from the longitudinal axis. With small flip angles, very little longitudinal magnetization is lost and the image contrast becomes almost independent of T1. Using a very short TE (with TR 20-50 ms, flip angle 30-45°) eliminates T2* effects, so that the images become proton density weighted. As the flip angle is increased, the contrast becomes increasingly dependent on T1 and T2*. It is in the domain of large flip angles and short TR that FISP exhibits vastly different contrast to FLASH type sequences. Used for T1 orthopedic imaging, 3D MPR, cardiography and angiography.

• View the DATABASE results for 'Fast Imaging with Steady State Precession' (5).Open this link in a new window

 
Further Reading:
  Basics:
MRI techniques improve pulmonary embolism detection
Monday, 19 March 2012   by medicalxpress.com    
Fourier Acquired Steady State 

• View the DATABASE results for 'Fourier Acquired Steady State' (5).Open this link in a new window

Reverse Fast Imaging with Steady State Precession 
(PSIF) A heavily T2* weighted contrast enhanced gradient echo (mirrored FISP) technique. Because TE is relatively long, there are much flow artifacts and less signal to noise. In normal gradient echo techniques a FID-signal results after the RF pulses. This FID is rephased very fast and just before the next FID follows a spin echo signal. The SE is spoiled in FLASH sequences, but with PSIF sequences, only the SE is measured, not the FID.

• View the DATABASE results for 'Reverse Fast Imaging with Steady State Precession' (2).Open this link in a new window

 
Further Reading:
  News & More:
Fast T2 weighted imaging by PSIF at 0.2T for interventional MRI.(.pdf)
   by cds.ismrm.org    
SHORT Repetition Technique Based on Free Induction Decay 

• View the DATABASE results for 'SHORT Repetition Technique Based on Free Induction Decay' (2).Open this link in a new window

Steady State Free Precession Sequence 
(SFP or SSFP) Steady state free precession is any field or gradient echo sequence where the TR is shorter than the T1 and T2 times of the tissue.
The flip angle and the TR maintain the steady state. The flip angle should be 60-90° if the TR is 100 ms, if the TR is less than 100 ms, than the choice of the flip angle for steady state is 45-60°. The T1 weighting is controlled by TR and flip, the T2 weighting increases with the TE. Common TR is between 20 - 50 msec.
 
Further Reading:
  News & More:
Generic Eddy Current Compensation for Rapid Magnetic Resonance Imaging(.pdf)
   by www.switt.ch    
Cutting Edge Imaging of THE Spine
February 2007   by www.pubmedcentral.nih.gov    
  Driven Equilibrium top
The significant problems we face cannot be solved at the same level of thinking we were at when we created them.
- Albert Einstein
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



Look
      Ups






MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 18 December 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]